
Run-Time Support for Parallel LanguageConstructs in a Tightly Coupled MultiprocessorDror G. Feitelson� Yosi Ben-Ashery Moshe Ben EzraIaakov Exman Lior Picherski Larry Rudolph Dror ZernikzInstitute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, IsraelE-mail contact: rudolph@cs.huji.ac.ilAbstractThis paper describes the run-time implementation of a parallel programming language.Unlike traditional designs, our system exploits both shared memory aspects and mes-sage passing features. It enjoys the bene�ts of both polling and interrupts, giving moreweight to the former, i.e. processors do not interrupt each other unless absolutelynecessary.The language/system interface deals with groups of parallel activities as whole, soas not to impose unnecessary serialization on the language implementation. Parallelblock-oriented and other constructs are implemented on top of a real-time operatingsystem. Algorithms and data structures for the distribution of newly spawned activitiesand for the termination of activities via parallel break and return instructions are de-scribed. Performance measurements are given to compare between possible algorithmsand explain the behavior of selected ones.Keywords: groups of activities, group creation, parallel termination, dynamic loadadaptation, shared memory architecture, non-uniform memory access.�Current address: IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598yCurrent address: Department of Mathematics and Computer Science, University of Haifa, 31999 Haifa,Israel.zCurrent address: Department of Electrical Engineering, The Technion, 32000 Haifa, Israel.1

21 IntroductionParallel programming is the activity of delineating the instructions to be carried out by anumber of processors and their co-relations.Low-level parallel programming facilities, such as C-threads [8], require the programmerto fork parallel activities one at a time. If many parallel activities are required, the pro-grammer must consider, e.g. spawning them in a loop or using a logarithmic tree structure[29].Alternatively, a high-level parallel programming language may be used. Such languagestypically include constructs for spawning all the required activities at once, thus delegatingthe question of an e�cient implementation to the runtime system.The responsibility and delineation of system services in a parallel environment is stillthe subject of much research and this paper argues that they should be divided among theparallel program, a runtime system, and an operating system kernel.In particular, the paper describes the implementation of such system calls in Maxi,the Makbilan runtime system. The Makbilan research multiprocessor is a shared-memory,bus-based machine, which is used to execute programs written in a locally de�ned paral-lel programming language, ParC[20, 4]. Maxi contains novel techniques that are widelyapplicable, although it is speci�cally tailored for the Makbilan and for the shared-memoryconstructs of ParC, to serve as an environment for research and comparison of alternativealgorithms.This paper discusses support for manipulations of group of threads. The operationswhich have to be provided include: �ne grain parallelism, spawning large number of threads,quick termination of groups, and varying amount of computation of threads. Their e�cientimplementation is achieved by:� A distributed design based on polling rather than interrupts: Each processor tries tominimize its interactions with other processors, so as not to exhaust communicationfacilities that might be required by the user application. Most of the interactions aredone by polling shared data structures when the processor is ready, rather than havingthe processors interrupt each other.� Dynamic process creation via a global queue and multitasking via local queues: A globalqueue is used for balanced distribution of the work when new activities are spawned,but local queues are used for e�cient scheduling of activities that have been created

3already. Processors access the global queue at a rate which is inversely proportionalto the size of their local queue.� Dynamic adaptation to the amount of concurrency: Since activities may be numerousand very short, it is not desirable to always create a task or process for each activity.The notion of envelopes is introduced to adapt to the right level of concurrency. Anenvelope is a task that is controlled by the low-level kernel and in which activitiesare executed. One envelope may execute many short-lived activities. On the otherhand, if the activities of a parallel program are all heavy and long-lived, or if theyare interdependent, then the number of envelopes will become equal to the number ofactivities and their scheduling will be managed by the real-time kernel.� E�cient support for parallel constructs that terminate groups of activities: The closedparallel constructs of the programming language require new, non-obvious implemen-tations to support the ability for one activity to terminate whole groups of relatedactivities. In ParC, a break or return operation can be executed in the middle of anested parallel construct thereby terminating the entire construct. The participatingactivities are identi�ed either by checking the structure of the activity tree or by usinga special coding scheme.� Locality in memory references: In a NUMA machine exploiting the local memory is akey issue in achieving e�ciency. The run-time system supports a variety of mechanismsto improve this aspect.ParC and its runtime system are intended to provide a general purpose convenientenvironment for users. A basic guideline in the system design is the desire to shift someof the burden of parallel programming from the user to the system. User programs enjoythe full bene�ts of a shared-memory environment, however, they are not allowed full controlover the processors and memory mapping. Instead, the programs issue high-level ParCinstructions and leave the implementation details to the system (see Figure 2). For example,the execution of a parfor construct invokesMaxi to spawn the required number of activitiesand map them to processors; the program does not specify on which processor the parallelactivities are to be executed. The design and evaluation of system algorithms for this andother problems is the main part of our research.The runtime system supporting the language constructs can be implemented either inthe operating system kernel, or else it can be implemented as a user-level software package

4above the kernel [1, 27]. We have chosen to build our system on top of a real-time operatingsystem kernel. The runtime system should have more control over tasks and other systemresources than is traditionally permitted in multi-user, interactive, time-sharing operatingsystems such as Unix. Instead of modifying such an operating system kernel, a real-timesystem kernel provides essentially the same control and requires signi�cantly less work. Italso has superior performance.Our focus was on the issues of activity creation, scheduling, and termination. Despitethe relative ease of implementing the runtime system above an existing real-time kernel, wedid not develop a full featured operating system. For example, we did not handle multipro-gramming, memory management, or parallel I/O. Sequential I/O was provided by the Unixhost, which also maintained the �le system.The next section provides the necessary background about the Makbilan multiprocessorand the ParC language. Section 3 introduces the underlying design of the Maxi runtimesystem. Sections 4 and 5 present theMaxi implementation of activity creation, and Section6 describes the implementation of forced termination.2 BackgroundOur model of parallel computation can be described as non-uniform access, shared memory,MIMD. In addition, the parallel machine is dedicated to executing a single (parallel) job.We have designed our runtime system for a particular machine platform, but this platformis indicative of a large number of parallel machines. The speci�c machine architecture isoutlined in the �rst subsection. On top of each processor is a real-time kernel that wasintended for uniprocessor applications. The second subsection reviews the features that arerelevant to our runtime system. Our maxi runtime system supports programs written inour local parallel language, although any language with calls to our runtime library canbe supported. The relevant features of our language, ParC, are presented in the thirdsubsection.2.1 The Makbilan TestbedThe Makbilan parallel computer has been assembled at the Hebrew University and has beenoperational for several years. The features that are relevant to the runtime system areoutlined below:

5� The Makbilan research multiprocessor consists of up to 15 single-board computers ina Multibus-II cage1.� Each board has an i386 processor running at 20 MHz, providing about 4 MIPS2. Amathematical co-processor, a message passing co-processor, and 4MB of memory arealso part of each board.� Memory on remote boards may be accessed through the bus, thus supporting a shared-memory model. As access to on-board memory is faster than access to memory onremote boards, Makbilan is a non-uniform memory access (NUMA) machine [3]. Theprocessors have on-board caches, but they do not cache remote references. Hence thereis no issue of cache coherence.� The box also includes one board that acts as a Unix host, and boards for a bus con-troller, a peripherals interface, and a terminal controller. Users log on to the Unixboard, and can then load and execute ParC programs on all the other boards.All memory addresses are translated by the paging mechanism; however, it is assumedthat the whole usable address space is located in physical memory. There is no pagingto disk. This not only simpli�es the runtime system, it also provides for faster programexecution. As 3 of the 4 MB of memory on each board are used for application data, heap,and stacks, an application executing on a 16-processor system has a total of 48 MB at itsdisposal.2.2 The Real-Time Operating System KernelIn addition to the o�-the-shelf hardware, our parallel processor uses an o�-the-shelf realtime kernel for many of the operating system functions on each processor. The local kernelis Intel's RMK [17], which is a real-time kernel designed to use hardware support providedby the i386 and the Multibus-II. This kernel is highly optimized to provide fast task cre-ation and context switching. In fact, context switching in RMK is faster than the contextswitching instruction provided in the i386 instruction set, because the kernel manipulates thehardware data structures directly [17, p. 7-35]: we clocked it at 72�s [3]. Parallel activities1i386 and Multibus-II are Intel trademarks.2Recently, a smaller con�guration with the newer and fast i486 processors also became operational. Ituses the same Maxi runtime system.

6are implemented by RMK tasks (which are the RMK equivalents of Unix processes). Theoverhead for task creation and termination is about 1ms [3]. The scheduling time quantumwas set to 50ms in Maxi.A real-time kernel, like RMK, has many advantages over the usual academic choice ofa Unix kernel because of several reasons. The primary reason is that it is highly e�cientand allows most of the CPU cycles to be devoted towards executing the parallel program.In addition, the kernel allows more involvement in the system state by the higher levels ofsoftware; in our case by the runtime system.Task priorities, memorymapping, and stack allocation can be controlled, and a high-levelinterface to the interprocessor interrupts facility is available. The RMK scheduler maintainsa set of task queues organized by priorities. A fence is speci�ed separating priorities thatallow preemptive scheduling from those that require nonpreemptive scheduling. Below thefence, tasks at the highest priority level are scheduled in a round robin, time sliced fashion.If a task above the fence becomes ready, it preempts the running task and runs until it yieldsthe processor, or until a task with a still higher priority becomes ready. The Maxi systemchanges the priority of tasks to ensure that they will not be interrupted by ParC activities.The kernel also makes it easy to provide virtual memory without paging. The Maxisystem does a static allocation of virtual address to physical address at system con�gurationtime.Almost all of the low level interrupt handling facilities are left to the real-time kernel.This includes the basic message passing primitives, the clock functions, and the handlingof error conditions. Once again, this removes much of the burden of system development.Finally, the real time kernel is small in size, both in terms of data structures and in actualcode. The kernel is replicated in each processors local physical memory. The RMK kernelsare local and maintain local data structures, e.g. the local run queue. At this level, thereis no notion of parallelism and interaction among the processors. All such interactions aredone by Maxi, and are described in the next section.2.3 The ParC LanguageParC is a superset of the C programming language, designed and implemented by our groupand intended to support parallel programming in a shared memory environment [20, 4]. Aprimary goal of ParC was to facilitate parallel programming by novice programmers; inparticular, undergraduate students pro�cient in C should be able to write parallel programs

7prefix(arr, beg, end)int arr[], beg, end ;f int m;if (beg � end) return;m = beg + (end - beg + 1)/2 -1;parblockf prefix(arr, beg, m); g:f prefix(arr, m+1, end); geparparfor int i; m+1; end; 1;f arr[i] = arr[i] + arr[m];gepargFigure 1: Implementation of parallel pre�x computation using divide and conquer in ParC,illustrates the use of parfor and parblock. The epar statement terminates the parallelconstructs.after one class or by reading a short document.The main extensions to the C language are two block-oriented parallel language con-structs, parblock and parfor; the �rst indicates that the constituent sub-blocks executein parallel, while the second indicates that iterations of the loop body be done in parallel.Each sub-block or iteration is called an activity. These constructs may be nested in arbitraryways, creating a tree of activities where all the leaves are executing in parallel. The programin Figure 1 illustrates the use of these constructs.The activities do not need to be independent of each other, but any dependencies mustbe explicitly enforced by synchronization statements. There are three main synchronizationmechanisms. The �rst is a fetch-and-add instruction, denoted faa, that provides an \atomic

8add to memory" operation. The second synchronization mechanism is semaphores. Thisallows activities to suspend execution when waiting for a certain event. The third is the syncinstruction, which implements a barrier synchronization among all the activities created bya certain parallel construct. The semantics of this instruction is that if the instruction doesnot appear in the code of all of the activities of the parallel construct, the activities in whichit does appear are forced to wait for the termination of activities in which it does not.The parfor construct has another version, called lparfor, which stands for \light"parfor. Using this construct indicates to the compiler that the activities are light-weightand independent, and allows it to generate optimized code. The activities are broken into anumber of chunks, one per processor, and each chunk is executed serially without additionaloverhead for work distribution and activity creation. The lprafor is designed to provide astatic tool for load balancing. Note that lparfor constructs can be freely intermixed withparfor and parblock constructs.As a rule, an activity that performs a parblock or parfor is suspended until all itschildren terminate. pbreak and preturn statements may be used to exit these constructsprematurely, in analogy with break and return. A pbreak breaks out of the innermostenclosing construct, kills all the parallel activities created by the construct (and their de-scendants), and resumes the parent. preturn returns from the last function call, and killsall the activities that were created in this function.The ParC memory model includes both shared and private data structures. The acces-sibility of the data structures is determined by static scoping rules. Thus a variable that isdeclared within the block of code that de�nes a certain activity is accessible only by that ac-tivity and its descendants. It is local to the activity in which it is declared. Global variablesare shared by all the activities. All this is implemented by the ParC compiler, which setsup pointers between the stacks of the di�erent activities [4]. Therefore no runtime supportis needed for handling the variety of types of memory accesses.The Makbilan is a NUMAmachine since each processor has local memory, shared memoryis distributed, and bus accesses are priority based. In order to allow shared memory objectsto be associated with activities (which is important in a NUMA architecture), a mappedlparfor construct is provided. Recall that an lparfor chunks activities so that the numberof chunks equals the number of processors. When the mapped version is used, the serialnumber of the processor that executes each chunk is guaranteed to match the serial numberof the chunk. Mapped mode for parblock and parfor constructs can be provided only for

9
structures

data
global

MAXI

interprocessor interrupts

shared memory

activities

RMK

kernel

MAXI

RMK

kernel

local
data

structures

structures
data
local

structures
data
local

local
data

structuresFigure 2: Interactions among components of the application andMaxi. Solid vertical arrowsdenote system calls, and dotted arrows denote access to data structures.the light version lparfor since the other constructs may generate more activities than theavailable processors. malloc can be used to allocate shared memory which is local to theallocating activity.3 Runtime System DesignThe Makbilan System, calledMaxi for short, is the interface between the parallel programand the real-time operating system kernel executing on each processor. By and large, Maxiis in charge of creating, terminating, and mapping each of the activities speci�ed in theparallel program. The Maxi runtime system supports ParC parallel constructs by usingthe services of the local RMK kernel on each board (Figure 2). The actual scheduling isalso done by RMK. Note that the local RMK kernel is not an inherent part of the system:alternative kernels that support local task manipulation can be used. Because all machinespeci�c details, including interrupt handling, are hidden in the underlying kernel, our Maxiruntime library code is fairly portable.The design philosophy of Maxi di�ers from traditional runtime designs for parallel ma-chines which have exploited either the shared memory aspect of the machine or the e�cient

10message passing features but never both.Parallel operating systems for shared memory, MIMD parallel machines with uniformaccess to the shared memory usually maintain system data structures in the shared memory.Each processor accesses and updates these structures as necessary. Of course, appropriatelocks are required. For example, process scheduling is done via a central global task queuewhere processors insert and delete tasks during context switch operations [10]. Dynamicmemory allocation schemes also work in a similar fashion.On the other hand, operating systems for parallel machines with distributed memoryand e�cient message passing mechanisms usually employ a distributed processing approach.That is, each processor maintains private system data structures. Processors communicatevia message passing and inter-processor interrupts. In many cases, these facilities are usedto provide high-level remote procedure calls (RPC) [26]. This allows the kernel itself tobe parallelized [27], so that one processor to directly in
uence other processors' actions byissuing remote procedure calls. For example, threads (activities) can be created, deleted,suspended, or resumed on a remote processor. Note that the a�ected kernel may be requiredto �eld many such remote requests at once. Moreover, these requests might interfere with thelocal computation carried out on the processor. The detrimental e�ect of such interferenceexists even in high performance parallel machines which allow only one process per processor,because much coordination is still needed for operations such as load balancing and parallelI/O.In our case, the target architecture is a nonuniform-access shared-memory system. Itis signi�cantly cheaper for each processor to access the memory situated on its own boardthan to access memory situated on another processor's board. Thus, it is preferable tomaintain private data structures. Similarly, it is desirable for activities to be scheduled onthe processor that has fast access to the activity's data structures, e.g. its stack. That is,once an activity is assigned to a processor, it should not migrate.The Maxi design is based on the observation that if all of the processors are alreadybusy, they should not interrupt each other: it is easier and just as e�cient to let eachprocessor work locally, and check for external requests when it is ready to service them.This is a legitimate approach since all activities have equal priorities. There is no reason togive a request from a remote activity precedence over the computation of a local activity.If certain processors are idle, they continuously check for external requests, and e�ciency isnot compromised.

11System Location Object SectionMaxi global list of new spawn descriptors 4.1active spawn descriptors used for sync 4.2per-processor lists of terminated spawn descriptors 4.2local Process Control Blocks and Tables 4.2lists of spawn descriptor representatives 5.2RMK local run queue 2.2interrupt vector 6.1Table 1: Main data structures in Maxi and RMKInterrupt mechanisms are expensive in terms of performance. Thus, it is preferable touse a polling scheme for communication between processors. Under Maxi, a processor thatgenerates a service request places information in an agreed upon location; other processorsperiodically check this location and as a result may take appropriate action and update theirlocal data structures. As a consequence, Maxi code need not be reentrant and does notneed to maintain a large number of locks.However, polling is not always adequate. Maxi makes use of the RMK interprocessorinterrupt facility so that one processor can cause all the others to perform some action inunison. The main use of this facility is to pbreak out of a parallel construct or to exit theprogram altogether.The main data structures used in Maxi are listed in Table 1, where they are classi�edas global or local. The main RMK data structures are also noted, mainly to show thatthey need not be part of Maxi. These data structures are further explained in the followingsections.4 Mapping and Scheduling of ActivitiesParC speci�es the activities that may be executed in parallel and RMK provides the taskmanagement on each processor, but it is the job of Maxi to map activities to processors.Recall that with the parfor construct, it is possible to create many activities, each executingessentially the same code but with a di�erent activity index. Also recall that the parent

12activity is suspended until all of the child activities terminate. Thus, the main runtimesupport required for such constructs is the distribution and execution of the activities, aswell as reporting back upon their termination. This section describes the simple mechanismto achieve these goals; the next section then discusses some optimizations.There is a wide spectrum of choices in the scheduling and allocating of activities toprocessors, especially when the number of activities may be much larger than the numberof processors. Of course each has its own advantages. One extreme possibility is to use self-scheduling from a single global workpile3. Each processor executes an activity for a singletime quantum and then replaces the activity back onto the workpile and chooses the nextactivity from the workpile [10, 19]. This approach has been applied in the past to parallelmachines with uniform access times to memory. So, the fact that the mapping of activitiesto processors is not preserved | it is highly unlikely that an activity will be executed by thesame processor for two consecutive time quantums | is not a drawback. The advantage ofthis scheme is that it provides an e�cient load sharing mechanism that does not allow anyprocessor to be idle while there is work to be done. On the other hand, the global workpilecan easily become a serial bottleneck. Moreover, in a NUMA architecture, it is di�cult totake advantage of the memory structure.At the other extreme is local scheduling with each processor maintaining it own localworkpile, and the activities are mapped to processors via program command [23]. Theadvantages are numerous. At the system level, local queues are considered more e�cientbecause activities do not move from one board to another. Thus state information suchas the activity's stack is always local and does not have to be copied. Local queues alsoreduce contention for global locks, which could degrade performance [2]. At the applicationlevel, the fact that activities do not migrate also opens the possibility for associating datastructures with activities, so that these data structures are always in local memory (this isimportant for any NUMA architecture). For example, a program can create a shared arraysuch that di�erent parts of the array are local to di�erent activities executing on distinctprocessors.Maxi leans towards this second approach in that there is a static mapping of activitiesand local workpiles are used. However, the mapping happens at run-time and depends onthe system state and load. The advantages of local queues also mesh nicely with the fact3We use the term workpile instead of the more common term task queue since parallel access to theworkpile violates the strict de�nition of a FIFO queue.

13
parfor

program:

1
create descriptor

spawn

descriptor

2
add to the
global list

from the list
get work

global list:

headtail

desc descdesc

create new activities
on different processors

3

Figure 3: Implementing spawns by a global list of descriptors.that RMK is based on local queues, and add impetus to its use. Had we decided to usea global queue we would have been unable to use RMK, or impose severe restrictions onits usage. A closely related approach appears in [11], but in Maxi we provide a schedulingscheme which is more sensitive to the load on each processor.The rest of this section �rst describes how activities are allocated to processors at run-time. It then addresses several straightforward but important implementation details.4.1 Activity AllocationIn designing a strategy for activity allocation to processors, we wanted to ensure that inthe extreme situations, the allocation strategy did the correct mapping. For example, whenthe number of activities is not greater than the number of processors and the activitiesare computationally heavy, then each activity should be mapped to its own processor. Inaddition, when the number of activities is much greater than the number of processors, andeach activity is short (e.g. less than a time quantum), then the system should provide goodload balance.As we do not use run-time migration for load balancing, it is important to balance theinitial mapping of activities to processors. TheMaxi implementation achieves load balancingin a straightforward manner, by using a global list of spawned activities, from which all the

14processors take additional work. To accomplish this, each processor has a special activity,called get work, that belongs to the run-time system. Whenever it is scheduled, it takes onenew activity from the global list. As the get work activity competes with other activitiesfor the processor, the rate at which it is scheduled depends on the load on the processor.Thus it will be scheduled more often on lightly loaded processors, causing them to take moreadditional work [21].Individual activities are not placed in the global list as this would incur a large overheadwhen a large number of light activities are spawned at once. Instead, each item on the list is adata structure called a spawn descriptor (Figure 3). It speci�es the number of activities thatshould be spawned, the code that they should execute, and possibly a pointer to an argumentslist that should be passed to them. The descriptor also includes a counter of the numberof activities that have terminated, additional data structures used in the implementationof synchronization primitives, and a pointer to the parent activity (this is used to resumethe parent when the last activity terminates). Whenever a parallel construct is executed,a new spawn descriptor is added to the tail of the list. New activities are generated fromthe descriptor at the head of the list. The head and tail are locked independently, allowingspawns and activity creation to proceed concurrently. As activities are always generatedfrom the oldest descriptor, the activity tree is executed in breadth-�rst order4. This ensuresa degree of fairness in the execution [4].The e�ectiveness of the load balancing scheme is demonstrated by our measurementresults from the following experiment. The experiment was performed on a 10-processorcon�guration. A total work of 100,000,000 assignments to the same global variable wasdivided equally among di�erent numbers of activities. In the �ve decompositions shownin Figure 4, the program divided the assignments among either 102, 103, 104, 105, or 106,activities. For each number of activities used, the �gure shows the total time required andthe way the activities came to be distributed among the processors. The important pointto notice is that the best performance is achieved when the number of activities on di�erentprocessors are not the same.When there were only 100 activities, each doing 1,000,000 assignments, the load wasdivided equally: each processor executed exactly 10 activities. However, the total executiontime was about 100 seconds, which was sub-optimal, as witnessed by the fact that when therewere a few thousand activities the execution time was reduced by 15%, requiring about 854Once again, due to the parallelism, it is not strictly breadth-�rst, but the parallel analog to it.

15
activitiesgranularity
time[sec] 10%

10%
10%

10%

10%

10%

10%
10%

10%

10%

100.2
1001000000 21%

15%

8%

8%

8%

8%
8% 8%

8%

8%

85.8
1000100000 21%

15%

8%

8%

8%

8%
8% 8%

8%

8%

85.6
1000010000

17%

12%
10%

9%

9%

9%

9% 8%
8%

8%

95.2
1000001000

9%

10%
10%

10%

10%

10%

10%
10%

10%

10%

171.0
1000000100050

100150 legend PE 1

PE 2
PE 3

PE 4

PE 5

PE 6

PE 7
PE 8

PE 9

PE 10

Figure 4: Results of load balancing experiment. The time is the parallel completion time.Percents do not always add up to 100 because of rounding error. It is therefore best to divide100,000,000 operations into several thousand activities when 10 processors are used.seconds (the minimum occurs for about 1900 activities). The distribution of the work showsthat this reduction was the result of non-equal loads: processor #1 executed about 212 timesas many activities as processors 3 through 10. The reason for this behavior is that processor#1 is more e�cient, because both the spawn descriptor and the global variable happen tobe in its local memory. Such a non uniform cost of accessing a variable is typical for NUMAarchitectures, and must be considered at the system design level as well. When the pool ofactivities is big enough, processor #1 takes more of them, executes them faster, and thusreduces the total execution time. Processor #2 is more e�cient than the others because aprocessor's bus priority depends on its serial number.The higher execution time for small numbers of activities results from two e�ects. If only10 activities are spawned, each processor executes one of them. Processor #1 might �nishhis earlier then other processors, but then it is left with nothing useful to do because all theother activities have been picked up already. But the measurement for 100 activities shows

16that actually processor #1 is not more e�cient than the others in this case. The reason isthat all the other processors are executing activities that access the global variable in the�rst processor's memory at a high rate. This high volume of remote accesses slows the �rstprocessor down. When there are thousands of other activities, the other processors takemore time o� for activity creation and termination, thus giving the �rst processor a chanceto get ahead.When the number of activities is very large (1,000,000 activities each doing only 100assignments), memory contention again degrades the performance of the �rst processor. Inthis case the contention is for the spawn descriptor, not the global variable. The additionaloverhead for spawning activities is also considerable, and therefore the performance deterio-rates dramatically. In particular, processor #1 now manages a bit less work than the others,because the contention for the spawn descriptor loads its local memory. Indeed, the maindrawback of the global list is that it has to be locked when activities are added to or deletedfrom it, thus serializing the process of activity creation to some degree. Note, however, thatthe serialization is not complete because allocating local data structures for the activity canbe done in parallel. Moreover, this drawback is well worth it because the global list allowsthe processors to balance their loads based on their relative performance, rather than justbased on the number of activities that each executes.The main lesson from this experiment is that in complex systems it is extremely hard toanticipate the interaction among the various factors that a�ect performance. In our case,these factors included the non-uniform memory access times, the contention for the bus andthe memorymodule, the di�erent bus priorities, and the detrimental e�ect of remote accesseson local memory accesses. Although di�erent machine architectures will have di�erent setsof complex interactions, they all share the feature that the e�ects of the complex interactionsare usually very di�cult to predict.Striving for load balancing by dishing out equal numbers of activities to the di�erentprocessors is not enough, because the above factors cause the processors to have widelyvarying e�ciencies. In our opinion, a better solution is to use a dynamic and adaptivesystem, that does the balancing at run time based on performance, rather than just keepingthe number of activities equal. But in order to be e�ective, the system must be given enoughactivities to distribute; speci�cally, the application must include more than the minimalnumber of activities, that is more than one per processor. However, the extreme of toomany very �ne-grained activities should also be avoided. As a rule of thumb, the length of

17each activity should be at least several times longer than the overhead required to generateit, which is of the order of a thousand shared memory accesses.4.2 Other Implementation DetailsWe present a few more ParC construct implementation details in order to show our use ofpolling and low run-time system overhead. The �rst example is the implementation of themapped lparfor construct, the second how we implement barrier synchronization, and thelast is how the parent activity is revived after all the child activities terminate.ParC provides for �ner control of the mapping of activities to processors to allow theprogrammer to optimize the use of local memory. The mapped lparfor construct statesthat the system will always use the same function for mapping activities to processors eachtime this construct is invoked. To meet this constraint, the get work task cannot just pickthe �rst new activity it sees; it must ascertain that the activity may be run on the sameprocessor.The implementation is trivial. A \mapped" �eld is added to the spawn descriptor. If thespawn descriptor represents a mapped lparfor, and only in this case, the �rst bit of this�eld is set. The rest of the bits are used as a bit mask to show which activities have beencreated already. When get work sees that the construct is mapped, it checks its bit in thismask. If it is set, this activity has been created already, so get work abandons this spawndescriptor and looks for the next one. If the bit is not set, the activity is created and the bitis set for future reference.The second example is that of barrier synchronization. The ParC construct is simply thestatement sync, and its semantics require that no activity continues its execution past thisconstruct until all activities have executed the sync construct. Uniprocessor and distributedprocessing systems generally use an event queue to implement the barrier synchronization.That is, as soon as a process executes a barrier synchronization, it is suspended and placedon an event queue associated with the particular barrier synchronization. Tightly coupledparallel systems with at most one process per processor almost always use a busy waitingsolution.Following our design philosophy, event queues are not used. Moreover, pure busy waitingis not employed. Instead, a shared data structure consisting of two pointers and a
agindicating which to use is updated and polled by the activities. This data structure islocated in the spawn descriptor from which the synchronizing activities were generated, so

18they all have pointers to it. Each activity that executes a sync �rst updates the sharedcounter. Then it checks to see it the counter indicates that all activities are ready. If not,it performs a yield instruction. This allows any other activities mapped to the same PEto execute its code. An activity mapped to a process with few activities will poll morefrequently than one that is mapped to a PE with many activities. When the last activityperforms the sync, it also resets the counter for the next sync operation. The two countersare used alternately, to avoid race conditions.Finally consider support for the resumption of the parent activity. When a certain activityspawns a set of child activities, it is suspended until the termination of all the child activities.This removes the activity from the RMK run queue, but it is still accessible through theMaxi PCB table5. The spawn descriptor contains two counters: one of how many childrenhave to be created, and the other of how many have not yet terminated. Both are initializedto the number of activities in the parfor or parblock construct. As each child is created,it decrements the counter of how many still have to be created. When this counter reacheszero, the spawn descriptor is unlinked from the global list. However, all the activities thatwere created from it maintain pointers to the spawn descriptor.Each child that terminates uses this pointer to access the spawn descriptor and decrementthe counter of non-terminated children. The last child to terminate, as identi�ed by thetermination counter reaching the zero, should resume the parent. This requires a kernel callon the processor on which the parent was running. If the parent was running on a di�erentprocessor than the one used by the child, the child cannot resume it directly.The solution is to create a set of lists of activities that should be resumed | one suchlist for each processor. The elements in these lists are the same spawn descriptors used togenerate the children: the last child that terminates links the spawn descriptor onto thetermination list associated with the processor on which the parent ran. This list is examinedby the get work task just before it examines the spawn list, and if any descriptors are foundon it the tasks that created them are resumed. To support this, the spawn descriptor includes�elds for the task identi�er of the parent and for the processor number.5The PCB table contains information about the tasks that have been created on the processor (PCBstands for \process control block"). Actually, the RMK PCB table is embeded in the Maxi PCB table.

195 Reducing Task Management OverheadReliance on a dynamic and adaptive system for mapping activities to processors is a goodidea only if it does not incur a large overhead. Particular attention is required when there isa large number of �ne-grained parallel activities. This situation is of real concern since it isoften convenient to express a parallel algorithm as being composed of a very large number of�ne-grain parallel activities. Much research has been done on the mapping and schedulingof such �ne-grain activities so as to achieve high performance. Data
ow architectures useextensive hardware support to achieve this goal [9, 25]. The common approach on conven-tional multiprocessors is to increase the granularity at compile time based on an analysis ofthe program structure (see, e.g., [22]). We advocate the support of ultra-light-weight tasksin the runtime system, and contend that e�cient support is possible at run time withoutprevious knowledge about the program. In fact, we hope to relieve the programmer fromthe need to investigate how to partition the work into activities in order to achieve goodperformance.The naive approach to activity generation maps each activity to an RMK task. Whenthere are very many independent and �ne-grain activities, this approach su�ers from theoverhead involved in creating these tasks. In addition, the system must maintain large datastructures to cope with all the tasks.In this section, we present several dynamic schemes to reduce this overhead. Maxi at-tempts to create and destroy a minimal number of RMK tasks by \reusing" these tasks. Werefer to a reusable task as an envelope. Overhead associated with access to shared structuresis also reduced by creating local representatives. Finally, overhead is reduced by optimizingthe implementation for the situation in which activities perform explicit synchronization.5.1 Envelopes: Support for Multiple Fine-Grained ActivitiesOur suggested optimization is based on the possibility that a single RMK task executesmultiple activities, saving overhead and data structures. A new RMK task is not createdfor every activity, but rather only if an activity suspends or executes for longer than ascheduling time quantum. In e�ect, the granularity is increased on-line when possible. Thisis actually an automatic on-line version of the lparfor construct.A similar approach has also been suggested for functional programming [18]. That workenjoys the bene�ts of freedom from side-e�ects, which makes all the tasks independent and

20get work:forever fif (global list not empty)create an envelope taskyield processorg envelope:while (global list not empty) freset timerremove and execute one activitygdelete the envelope taskFigure 5: High level description of the get work task and of an envelope. Each processorhas one get work task in its local queue, and it creates additional envelopes as necessary.therefore makes it possible to combine them together in any way. Our mechanism is moregeneral and
exible, and correctly handles situations in which one activity depends on an-other.The details are as follows. As already described, the get work task on each processorlooks at the global list, and creates a new task if it �nds work (Figure 5). However, thecreated task does not directly execute a single activity; rather, it executes what we callenvelope code (the code that allows a task to be reused). An envelope serially executesactivities. That is, it transfers control to one activity at a time (Figure 5). Whenever anactivity terminates, control returns to the envelope code which goes back to the global listto get another (new) activity to execute.Only when the global list is empty does the envelope delete itself. The timer is reset to afull time quantum before each activity is started. Thus, if the activities are indeed indepen-dent and �ne-grained, the envelope will not be preempted. Therefore there is a good chancethat one RMK task per processor will execute all of them, without the overhead for gener-ating additional RMK tasks and without the overhead of context switching. If, however, anactivity suspends execution due to synchronization constraints, or executes for longer thana time quantum, the envelope is preempted (as part of the standard RMKmultitasking fa-cility). A new envelope is then created by get work to deal with the rest of the activities.In the extreme case, this degenerates to the naive algorithm where a separate RMK taskwas created for each activity at the outset.Note that envelopes are more
exible than previous proposals for pre-creation of tasks(e.g. in [5]), because the number generated is adapted to the characteristics of the program.When there are many short independent tasks, the overhead is on the order of a procedure

21call. When independent tasks are very long, the envelopes introduce a small overhead relativeto the total execution time. Therefore, the envelopes are still competitive with an optimalexecution that would not create redundant tasks. The main advantage of the envelopesmechanism, though, is that it does not require any user intervention.It should also be noted, however, that envelopes are less
exible than the thread man-agement mechanisms used in various thread packages (e.g. [13, 28]). These mechanisms usetheir knowledge of the application to perform �ne-grain thread scheduling without operatingsystem intervention. In e�ect, they replicate operating system services within the appli-cation. We feel this type of implementation is overly complex, especially since the RMKkernel we are using is rather e�cient in its own right. Interestingly, the often-cited problemof handling thread blocking is turned from a disadvantage into an advantage in our design.Other thread packages need to be able to block a user thread without blocking the kernelthread that implements it, so that the same kernel thread can go on to execute other userthreads. This complicates their implementation. In our design, blocking signals the fact thatthe activities are interdependent, and therefore additional RMK tasks should be created forthem.5.2 Representatives: Improving LocalityTo further reduce the overhead, there should be no interprocessor interaction involved in theexecution of independent �ne-grain activities. In particular, possible contention for the globallist should be avoided. This can be achieved by partitioning the activities into disjoint sets,which are associated with the di�erent processors. The relationship between the di�erentcomponents of the activity execution mechanism is then as follows:� When a set of activities should be spawned, a spawn descriptor is placed in the globallist as before.� When the get work task on any processor �nds a spawn descriptor in the global list,it creates a local representative of the descriptor. A certain fraction of the activitiesare moved from the spawn descriptor to the representative. All local representativesare linked together, creating a local list.� Envelopes loop and take activities for execution from the local representatives. As onlyone envelope can execute at a time on a certain processor, no locks are needed. Theenvelopes are non-preemptable when accessing the local queue.

22time [s]code default envelopes rep'sparfor 10000delay(1ms); 4.02 3.36 2.02lparfor 10000delay(1ms); 2.02 2.02 2.02parfor 1000sync; 4.95 5.12 5.02parfor 100parfor 100sync; 7.50 2.85 2.50Table 2: Experimental results using envelopes and representatives. A �ve-processor con�g-uration was used.The main question that remains is how to divide the activities between the representatives.Equal division may not be optimal if the activities are not identical. A promising approach isto always allocate 1=P of the remaining activities, as was suggested for guided self-schedulingof parallel loop iterations [19].5.3 Experimental ResultsExperimental results using envelopes and representatives are presented in Table 2. Moredetailed results can be found in [24]. Four di�erent codes are used as examples (the codegiven in the table is shorthand that captures the essence of the real code, but is not realParC syntax). In the �rst, 10000 activities are spawned, and each performs some local workthat takes 1ms. Using envelopes is somewhat faster than the default version, but the realadvantage comes from using representatives. In fact, with representatives the elapsed time isreduced to within 1% of the actual computation time (10000 activities � 1ms / 5 processors= 2sec).The optimality of representatives is also shown by the second experiment, which is iden-tical to the �rst except for using the lparfor construct. This construct tells the compilerthat the spawned activities are independent, and that they should be chunked into P equalchunks, one per processor. Thus the compiler substitutes the user directive to spawn 10000activities by a directive to spawn just P activities, and in addition generates code by which

23these activities each perform 10000=P of the original assignments. This eliminates any un-necessary overhead. Using envelopes or representatives doesn't change anything becausethere is actually only one RMK task on each processor.The third example concerns 1000 activities that perform a barrier synchronization. Inorder to do so all of the activities have to be spawned, so the envelopes gain no advantage.However, if there are multiple sets of synchronizing activities, as in the last example, en-velopes can be reused for di�erent activities. With representatives, this leads to a speedupof 3.5.4 Support for Synchronizing ActivitiesA bug in the initial implementation of envelopes exposed another optimization which wehad not thought of. The bug caused Maxi to initially create an envelope task for eachactivity (precisely what we had hoped to avoid), rather then creating them one at a time inthe hope that some task creation can be avoided. To our surprise, this led to a signi�cantimprovement in the execution time of the third example, where all the created activitiessynchronize with each other. The reason is that creating all the envelopes at once saved theoverhead of switching to get work and checking the global list for each one.Further analysis showed that if all the activities barrier synchronize (sync) shortly afterbeing spawned, the time to create them is quadratic in the number of activities (Figure6). In contrast, the cost of just spawning activities or just performing a sync is linear. Thequadratic factor is a result of the way that the sync is implemented, and speci�cally, a resultof using busy waiting with a yield instruction. The system then operates according to thefollowing scenario. First, one activity is spawned by the get work task. This activity triesto sync, �nds that its siblings have not arrived yet, and yields. get work runs again, andspawns another activity. This activity too tries to sync, fails, and yields. The �rst activityis then rescheduled, tries again, fails again, and yields again. This pattern is repeated untilall the activities are spawned: after each one, all the existing activities try to sync. Thusthe time to spawn and sync N activities is proportional to the sum of N times the spawnoverhead, plus (N=P)2=2 times the overhead to perform a context switch and check the synccondition.Rather than always create a table full of envelopes, which also has non-negligible over-head, it is easy to implement an optimization that solves this problem in a selective manner.Recall that the shared data structures used to implement barrier synchronization among sib-

24
0

300

600

900

1200

1500

0 250 500 750 1000

t
i
m
e

p
e
r

o
p
e
r
a
t
i
o
n

[
m
s
]

number of activities

just sync
spawn & sync
just spawn

Figure 6: Time for sync instruction by a large number of activities. Performance degradessharply if the activities have to be spawned.ling activities are stored in their spawn descriptor. When get work spawns a new envelope,it can check the barrier count in the spawn descriptor at the head of the list. If it is not at itsinitial value, this means that one of the sibling activities that has been created already hasreached a barrier synchronization point. The nature of barrier synchronization then impliesthat all the siblings are probably going to synchronize, and therefore they are not inde-pendent. Therefore get work should not create just one envelope, but rather should createenough envelopes for all the activities that may be expected to execute on this processor.6 Forced Termination of Activity GroupsBecause ParC uses closed constructs to form a serial/parallel graph of activity execution,special features are needed to support premature termination. We �rst review the semanticsof the type of termination, then give two implementation schemes, and �nally present ourexperimental results.

256.1 The pbreak and preturn instructionsParallel activities in ParC programs are de�ned by blocks of code in parallel constructs andare created and terminated dynamically at run time. There is no equivalent to the Unixfork style, which tells the system to \create an additional activity" nor is there any notionof an activity identi�er or ID at the language level. Moreover, there is no way to explicitlykill an activity or send it a signal. However, it is possible to terminate all the activitiesthat were generated by the same construct, together with any descendants created by nestedconstructs. This happens when one of the activities tries to jump out of the construct, byissuing a pbreak or preturn instruction. For example, such behavior is useful when a setof parallel activities are spawned to speed up a search through a large data structure. Theactivity that �nds the required item then pbreaks, terminating the search of all the otheractivities [4].Terminating a subtree of activities can be done in synchronous or asynchronous styles.The synchronous style means that the whole system is interrupted and immediately takessteps to terminate the relevant activities. The asynchronous style means that a notice aboutterminating the subtree is posted in shared memory, and each processor does its part at itsconvenience. We advocate the synchronous style, because the whole point of the pbreak andpreturn statements is to stop various activities from doing spurious work. It is thereforeimperative that the subtree be deleted as soon as possible. This also prevents situationswhere new activities are generated at a higher rate than existing ones are terminated. Notethat this is a situation where polling cannot be used, and we must resort to using inter-processor interrupts.pbreak and preturn in parallel constructs are implemented by sending a broadcast in-terrupt to all the processors. The interrupt handler that is installed in the RMK interruptvector is a Maxi function that scans the processor's PCB table, and deletes those belong-ing to the subtree that is being terminated. The main challenge is to identify the requiredactivities. This is complicated by the fact that the activities in each level of the subtree arespread across all the processors, and the only link between an activity and its grandparentthat happen to be on the same processor may be a third activity on another processor.Implementing preturn is further complicated by the fact that the root of the subtree is notnecessarily the direct parent of the activity that performs the preturn, and it is also neces-sary to pass a return value. However, these problems are easily dealt with by a source-leveltransformation, which is implemented by the ParC compiler [12].

266.2 Algorithms for Activity Identi�cationWe have designed two algorithms for identifying the related activities that should be termi-nated. The considerations in comparing them involve the overhead that is required whenactivities are spawned, and the resulting e�ciency of terminating a subtree. If one assumesthat forced termination is rare, it is better to reduce the overhead of spawning at the ex-pense of more costly forced termination. If, on the other hand, forced termination happensfrequently, it should be optimized at the expense of more bookkeeping during spawning.First, however, consider the straightforward implementation. When a termination con-struct is executed, it is possible to traverse the recursive structure of the activity tree, deletingonly the direct children of a given activity at each stage. To do so, it is enough to broad-cast the parent activity's ID6 to all the processors. If any of these children have additionaldescendants, a recursive broadcast is sent with the child's ID. This scheme is completelygeneral, conceptually simple, and can deal with any tree structure. It also does not add anyoverhead when activities are spawned. However, it requires all the activities to be scannedagain for each internal node in the subtree when the subtree is being terminated. This re-peated scanning requires complicated coordination between the processors, to ensure thatthe whole subtree is indeed deleted and that the parent activity is not resumed too soon.Alternatively, we propose a bottom-up version of this approach. Again, the activityID of the root of the subtree that is being terminated is broadcast to all the processors.The activities on each processor are scanned, and the parent pointers are followed fromeach activity up to the root of the activity tree7. If the subtree root is encountered on theway, the activity is marked to be deleted. The cost of this approach is proportional to thenumber of activities in the system multiplied by the depth of the whole activity tree. Itsmain drawback is that it links data structures in distinct processors, forcing many remotereferences to be made. There is also a danger that the links in the top levels of the treewould become hot-spots, and that contention for them would reduce system performance.However, this can be avoided by marking each activity that is identi�ed as being either inor out of the subtree, and searching only until a marked activity is found rather than up tothe root.The third algorithm is to use a coding scheme that allows all the descendants of a given6While activities do not have IDs at the language level, they do at the system level. This is a system-wideunique integer.7Note that the PCB table must be globally accessible for this to work.

27algorithm increase inspawn overhead average operationsper killed activitycoding 6% 6.7{8.4bottom-up 21% 12.5{13.5Table 3: Comparison of the performance of two implementations of the kill-tree operation.A number of di�erent trees with about 4000 activities were used.activity to be identi�ed at once. For example, activities may be identi�ed by ranges of(unsigned) integers, written as [b; t]. The �rst activity in the program is identi�ed by thewhole range from b = 0 to t = 232�1. When an activity identi�ed by [b; t] spawns k children,the range is divided into k; the �rst child is then identi�ed by hb; b+ t�bk i, the second byhb+ t�bk + 1; b+ 2(t�b)k i, and so on. Activities in a subtree rooted at [b; t] are then easy toidentify: they have ranges that are a subrange of [b; t].This scheme is much simpler than the previous one, in the sense that it is easy to maintainthe ranges and the search time is only proportional to the number of activities. It maindrawback is that it limits the size of the activity tree that can be spawned. However, thereis a nice tradeo� between the depth and width of the tree. With 32-bit words, for example,only 3 levels of nesting are possible if a thousand activities are spawned each time. But ifonly two are spawned, 32 levels of nesting are supported. If 64-bit words are used for therange boundaries, these numbers become 6 and 64 levels respectively; this is already availableon DEC's Alpha microprocessor, and is expected to be available in other microprocessorsshortly. Note that by using any integers for range bounds, rather than using bit positions,the restrictions on the activity tree are reduced. It is expected that in most cases systemtables will be the limiting resource, and not the coding scheme.6.3 Implementation ResultsRun-time libraries implementing the last two algorithms have been written [12]. The per-formance of the two approaches is tabulated in Table 3. As expected, the coding schemeis more e�cient. However, considering that the coding limits the structure of the activitytree, we decided to provide users with both options. Users who know that their programdoes not spawn too many activities may use the coding scheme. Otherwise, the more generalbottom-up scheme should be used.

28

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

tim
e

[s
ec

]

place of item searched in the array in millions

serial search
serial search

parallel search without pbreak
parallel search without pbreak

parallel search with pbreak

Figure 7: Results of searching for an element in a large array.The question still remains as to whether using pbreak and preturn is bene�cial at all,or maybe the overhead is too large. To resolve this question, we wrote a small test programthat searches for a certain element in a large array. When the search is done in parallel,the activity that �nds the correct element can terminate the futile search of its siblings bybreaking out of the parallel construct. The results are shown in Figure 7. For a sequentialsearch, the time to completion depends on the location of the item in the array. For aparallel search without using pbreak, the search time is nearly constant. This is the timerequired by activities that do not �nd anything to �nish searching their allocated part of thearray. When pbreak is used, however, the search time varies widely. If any activity �nds

29the element at the beginning of its part of the array, it terminates the search at once. But ifthe element is found near the end of an activity's part, there is no saving. For large arrays(like the one in the �gure) the overhead for the pbreak is small enough so that on averagethe search time is cut in half.7 ConclusionsMost multiprocessor operating systems are straightforward adaptations of uniprocessor sys-tems. This forces parallel language implementations to be based on primitives that wereoriginally designed for time-sharing systems, such as fork or kill. As a result unnecessaryserialization may occur.The Maxi runtime library that supports ParC programs is based on an interface thatdeals with groups of activities at once. Thus e�cient parallel implementations are possible.This poses new challenges and opportunities in the area of parallel system design. Algorithmsfor the creation and management of groups of new activities and for the forced termination ofsubtrees of activities were developed in response to this challenge. The underlying principleof our design is the use of polling rather than interrupts whenever possible, so as to reduceoverhead and complexity. Parallel aspects of the runtime support are essentially handledby a user-level library. The actual task management activities are done on each processorindependently of all the others, using a real-time kernel.This design should be contrasted with other parallel runtime systems, in which the kernelitself is parallelized. Such systems allow one processor to directly in
uence other processors'actions by issuing remote procedure calls. For example, threads (activities) can be created,deleted, suspended, or resumed on a remote processor. Note that the a�ected kernel maybe required to �eld many such remote requests at once. Moreover, these requests mightinterfere with the local computation carried out on the processor. In contrast, the Maxidesign is based on the observation that if all of the processors are already busy, they shouldnot interrupt each other: it is easier and just as e�cient to let each processor work locally,and check for external requests when it is ready to service them. If certain processors areidle, they continuously check for external requests, and e�ciency is not compromised. Ouractivity allocation schemes are sensitive to the actual load on the processors, and supportmapping constructs which are essential for the utilization of a NUMA machine.Maxi is a research environment. Several versions and some support tools have been

30developed, while the system itself is also used for research on parallel algorithms and forparallel programming courses. The various versions support gang scheduling, (rather thanscheduling each activity individually) [15], monitored mode [6], and deadlock detection mode[14].AcknowledgmentsThe ParC language was �rst developed by Yosi Ben-Asher. Some extensions were lateradded by Izhar Matkevich and Dana Ron. The compiler and simulator were written by YosiBen-Asher, Marcelo Bilezker, and Itzik Nudler. The simulator's task system was ported tothe Makbilan multiprocessor by Omri Mann and Coby Metzger. The new system, which isdescribed in this paper, was developed and implemented by Moshe Ben-Ezra, Lior Picherski,and Dror Feitelson. Yair Friedman implemented the kill-tree operation, and ConstantineShteiman implemented envelopes and representatives. Dror Zernik, Larry Rudolph, YosiBen-Asher, and Sharon Broude took part in the discussions of various design alternatives.Martin Land kept the hardware up and running. Larry Rudolph has been in charge of thewhole project since its inception, and Iaakov Exman replaced him when on sabbatical.The parallel processors hardware was funded by a grant from the Israel Vatat Foundationand a generous equipment grant from Intel Corporation. The Maxi system was supportedin part by grants from the US-Israel BSF 88-0045 and France-Israel BSF.References[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy, \Scheduler activations:e�ective kernal support for the user-level management of parallelism". ACM Trans.Comput. Syst. 10(1), pp. 53{79, Feb 1992.[2] T. E. Anderson, E. D. Lazowska, and H. M. Levy, \The performance implications ofthread management alternatives for shared-memory multiprocessors". IEEE Trans.Comput. 38(12), pp. 1631{1644, Dec 1989.[3] Y. Ben-Asher and D. G. Feitelson, Performance and Overhead Measurements on theMakbilan. Technical Report 91-5, Dept. Computer Science, The Hebrew University ofJerusalem, Oct 1991.

31[4] Y. Ben-Asher, D. G. Feitelson, and L. Rudolph, \ParC | an extension of C for sharedmemory parallel processing". Software | Pract. & Exp., to appear.[5] P. BrinchHansen, \The programming language Concurrent Pascal". IEEE Trans. Softw.Eng. 1(2), pp. 199{207, Jun 1975.[6] D. Citron, I. Exman, and D. Feitelson, MKMONITOR - A Parallel Monitor, or WhatYou See is What You Program. Technical Report 91-19, Dept. Computer Science, TheHebrew University of Jerusalem, Dec 1991.[7] R. F. Cmelik, N. H. Gehani, and W. D. Roome, \Experience with multiple processorversions of Concurrent C". IEEE Trans. Softw. Eng. 15(3), pp. 335{344, Mar 1989.[8] E. C. Cooper and R. P. Draves, C Threads. Technical Report CMU-CS-88-154, Dept.Computer Science, Carnegie-Mellon University, Jun 1988.[9] J. B. Dennis, \Data
ow supercomputers". Computer, pp. 48{56, Nov 1980.[10] J. Edler, A. Gottlieb, and J. Lipkis, \Considerations for massively parallel UNIX systemson the NYU Ultracomputer and IBM RP3". In EUUG (European UNIX system UserGroup) Autumn '86 Conf. Proc., pp. 383{403, Sep 1986. Another version appeared inProc. Winter USENIX Technical Conf., pp. 193{210, Jan 1986.[11] P.A. Emrath, M.S. Anderson, R.R. Barton, and R.E. McGrath, \The Xylem operatingsystem", Intl. Conf. on Parallel Processing, vol I, pp 67{70, Aug 1991.[12] I. Exman, D. G. Feitelson, and Y. I. Freidman, How To Kill an Activity Tree. TechnicalReport 91-20, Dept. Computer Science, The Hebrew University of Jerusalem, Dec 1991.[13] J. E. Faust and H. M. Levy, \The performance of an object-oriented threads package".In Object-Oriented Prog. Syst., Lang., & Appl. Conf. Proc., pp. 278{288, Oct 1990.[14] D. G. Feitelson, \Deadlock detection without wait-for graphs". Parallel Computing17(12), pp. 1377{1383, Dec 1991.[15] D. G. Feitelson and L. Rudolph, \Gang scheduling performance bene�ts for �ne-grainsynchronization". J. Parallel & Distributed Comput. 16(4), pp. 306{318, Dec 1992.[16] INMOS Ltd., Occam Programming Manual. Prentice-Hall, 1984.

32[17] Intel Corporation, iRMK I.2 Real-Time Kernel Reference Manual. 1988. Order number462660-001.[18] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr., \Lazy task creation: a technique forincreasing the granularity of parallel programs". IEEE Trans. Parallel & DistributedSyst. 2(3), pp. 264{280, Jul 1991.[19] C. D. Polychronopoulos and D. J. Kuck, \Guided self scheduling: a practical schedulingscheme for parallel supercomputers". IEEE Trans. Comput. C-36(12), pp. 1425{1439,Dec 1987.[20] L. Rudolph and Y. Ben-Asher, The PARC System. Technical Report CS-88-8, LeibnizCenter for Research in Computer Science, Hebrew University of Jerusalem, Aug 1988.[21] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, \A simple load balancing scheme fortask allocation in parallel machines". In 3rd Symp. Parallel Algorithms & Architectures,pp. 237{245, Jul 1991.[22] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. MITPress, 1989.[23] M. L. Scott, T. J. LeBlanc, and B. D. Marsh, \Design rationale for Psyche, a general-purpose multiprocessor operating system". In Intl. Conf. Parallel Processing, vol. II,pp. 255{262, Aug 1988.[24] K. Shteiman, D. Feitelson, L. Rudolph, and I. Exman, \Envelopes in adaptive localqueues for MIMD load balancing". In CONPAR'92/VAPP-V, Sep 1992. To appear.[25] V. P. Srini, \An architectural comparison of data
ow systems". Computer 19(3),pp. 68{88, Mar 1986.[26] B. H. Tay and A. L. Ananda, \A survey of remote procedure calls". Operating SystemsRev. 24(3), pp. 68{79, Jul 1990.[27] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black, E. Cooper, and M. W. Young,\Mach threads and the Unix kernel: the battle for control". In Proc. Summer USENIXTechnical Conf., pp. 185{197, Jun 1987.

33[28] A. Tucker and A. Gupta, \Process control and scheduling issues for multiprogrammedshared-memorymultiprocessors". In 12th Symp. Operating Systems Principles, pp. 159{166, Dec 1989.[29] D. Vrsalovic, Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplan, C. Fineman, S. Kravitz,T. Lehr, and M. Russinovich, \MPC - multiprocessor C language for consistent abstractshared data type paradigms". In 22nd Ann. Hawaii Intl. Conf. System Sciences, vol. I,pp. 171{180, Jan 1989.

