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Abstract

Given a3 D object and some measurements for points in this object, it is desired to fisftloeation
of the object. A new model based pose estimator from stereo pairs based on linear progranmning (
is presented. In the presence of outliers, the mewestimator provides better results than maximum
likelihood estimators such as weighted least squares, and is usually almost as good as robust estimators
such asLMEDS. In the presence of noise the new estimator provides better results than robust
estimators such asmeDs, and is slightly inferior to maximum likelihood estimators such as weighted
least squares. In the presence of noise and outliers - especially for wide angle stereo - the new estimator
provides the best results.

TheLp estimator is based on correspondence of a points to convex polyhedrons. Each points corre-
sponds to a unique polyhedron, which represents its uncertailtf ias computed from the stereo pair.
Polyhedron can also be computed fdp data point by using a-priori depth boundaries.

TheLpP estimator is a single phase (no separate outlier rejection phase) estimator solved by single
iteration (no re-weighting), and always converges to the global minimum of its error function. The
estimator can be extended to include random sampling and re-weighting within the standard frame work
of a linear program.

1 Introduction

Model based pose estimation is a well studied problem in computer vision and in photogrametry,
where it is called:absolute orientationThe objective of the problem is finding the exact location of a
known object in3 D space from image measurements.
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Numerous references regarding pose estimation appear in the literature, see [16, 8, 19].
Pose estimation problem consists of several sub-problems, including:

1.

2.

3.

Feature type selection - points and lines are commonly used [3, 18].

Measurement type selectiof b features t®3 D features2 D features t®@ D features or a combi-
nation of2D features an@ D features [7, 9, 10].

Estimator selection - least squares, kalman filter, hough transform [9, 10, 12, 1].

This paper is focused on the estimator part for measurements obtained by a stereo head. The proposed
estimator is based on point to polyhedron correspondence using linear programming. The estimator was
tested for non-optimal conditions including strong non-Gaussian noise, outliers, and wide field of view
(up to+80°). The proposed linear-programmingpj estimator is compared to the following estimators:

1.
2.
3
4.
5.
6.

Least squaresl-, based estimator§Q).

Weighted least squarew|((S) using covariance matrices.

. Least absolute differenced.; based estimatoLAD)

Least median of squaresMeEDS or LMS)
TUKEY BI-WEIGHT M-ESTIMATOR which uses the MEDS solution as its initial guess.

A variant of theTUKEY M-ESTIMATOR that uses covariance matrices as well.

Next we briefly describe each of the above estimators. Section 2 describes the prgpestidator.
Section 4 describes the testing procedure and test results. Section 5 describes future enhancements of
the proposed estimator. The following notation is used: given two sets of pois i)/, } - the model
points and{ P;} - the measurements we want to find a rigid transformation: a rotation matriX and
a translation vectdrf’ that minimizes the distance betwe@h+ RP) and /.

1.1 Least square pose-estimator

The error function isy_, |7+ RP; — M;]||,. To find the transformation we defing = P, — P,

Qi =

M; — M wereP, M are the averages ¢} and{ )} respectively. fUSVT = SVD(SQT)

then the rotation matri® is given byR = UV " and the translation vectdt is given byl’ = M — RP.
See [5]. Since we would like to use a common framework for our comparison for non least-squares
estimators as well, we use the following three stage algorithm and present its resgipfas well.

1.

We seek an affine transformatidghwhich minimizes some error function. FosQ the error
function is: >°. ||(M; — FP)||s. ForLsQ F is recovered by = (ATA)#ATb where: A =
(M]",...M]", b= P" and '# denotes pseudo inverse.



Figure 1. Stereo uncertainty polyhedron - The shape of each polyhedron is a function of the point-rig
geometry and the radius of error in the image plane.

2. The rotation part o’ denoted ag, is projected onto the closest (in the least-squares sense)
rotation matrix? = UV whereUXV"T = SV D(F,). The determinant of? is checked to
eliminate reflectionsdet(R) = —1). The step is common for all estimators.

3. The translation is then recovered. EsQ by 7' = M — RP. For other estimators by warping the
model according td? and then solving for translation.

1.2 Weighted least squares estimator

InwLs we seek an affine transformatidnthat minimizes".(b— AF) "W (b— AF'). F is recovered
by FF = (ATWA)*ATWb. WherelV, the weight matrix is a block diagonal matrix, each block is a
3 x 3 covariance matriXV; of the corresponding pai\/;, P;). W; is computed as follows: faw;, ¢; -
the projection of the (unknowr)D point P; onto the two stereo images, we use the bounding rectangles
[((pi)e £ 7, (pi)y £ 7], [(@:)s £ 7, (), £ 7], to compute a 3D bounding polyhedranfor P;. The weight
matrix IV; is taken as the covariance matrix of the eight vertice®pfvith respect toX, Y, andZ
coordinates. See Fig. 1. The radius a tunable parameter which will be discussed later in the article.
The shape of the polyhedron is dependent upon point location with respect to the stereo head and the
image uncertainty radius. This shape varies from point to point and it is not symmetric even though the
image uncertainty radiusis symmetric. For this reason a simple least squares does not provide the best
estimation.

1.3 Least of absolute differences estimator

In LAD we seek an affine transformatiédhthat minimizes the error functior).. ||(A; — FP;)||,. F'
is recovered by solving the following linear programming problem:



Min: Y (1 )a+ (1 )o + () + (r)y + (17)a + (7)) (1)

Subject to
(M; = FP)y + (r])s — (r; )z =0

(M; — FF), + (T;r)y —(ri )y =
(Mi - FPZ)z + (T*)y - (Tz'_)z =0

rir; >0

In linear programming all variables are non-negative, therefore a real typed varigbtepresented
by a pair of non negative variables: = (¢* — x~). This holds for the elements df as well (not
explicitly shown) and for theesidual error slack variableér;),,, ..

At the global minimum pointve get either™ = 0 or r— = 0 for each pair, and hence (r* +r7)
is the sum of least absolute differences [24D has been successfully used for motion recovery in the
presence of noise and outliers, however sinca.fie error function is symmetric, and the uncertainty
shape in 3D is not, theaD is not fully suitable to the pose estimation problenaD, like other M-
estimators, has a breakdown point of zero duleverage pointstherefore it is not considered a robust
estimator. In the experiments we used strong outliers - up to the maximum possible range within image
boundaries, trying to break theaD estimator by leverage points. Although we managed to break it
down when the number of outliers exceeded a certain point (above 40%) we did not see leverage point
symptoms. This result complies with earlier results [*]. We believe that this is due to the fact that the
error was bounded by the image size.

1.4 Least median of squares estimator

In LMEDS we seek an affine transformatidnthat minimizes:median(||M; — F P;||»). LMEDS is
a robust estimator in the sense of its breakdown point which is 0.5 - the largest value possible. Unfor-
tunately, deterministic algorithms faMEDS have exponential time complexity. To solve this problem
a probabilistic algorithm by random sampling is used: several model estimations are recovered by d-
ifferent random samples. The residual error is computed for each estimation and the estimation with
the lowest median of squares is selected as kheDs estimation. This probability of the algorithm’s
success is:

P=1-[1-(1-¢" (2)

where: ¢ is the probability of choosing an outliert is the number of guesses needed for model
recovery andh is the number of iterations. However, this analysis assumes that the data points are
dichotomic - each data point is either an outlier, or a perfectly good inlier. This assumption does not
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hold in the presence of noise and it affects the accuracy of the algorithm. Note that the time complexity
of the probabilistic algorithm grows exponentially with thus trying to reduce the noise influence by
enlarging the support is very costly. See [14, 15, 4, 11, 17].

1.5 Tukey Bi-weight M-estimator

In TUKEY M-ESTIMATOR we seek an affine transformatidhthat minimizes:

i pIM; — FPl/o;) 3)
I — (1 — (%)2)3 ul < b
o) = {:2[ A=) <
= lu| > b

Wherep(u) is the loss functior is a tuning parameter ang the scale associate with the value of the
residual error; » = ||M; — F'P;|| of the inliers. Equation 3 is often solved by an “iterative re-weighted
least-squares” [13] with the following weight function:

w(u=rop/6) = lu)/u (4)
L [ <
W) = plu) = {0 s

Whereg is a scale estimate. The following scale estimation was used in the test

N
w;TiF

N

(5)

&=
=1
The initial guess ofw; and the scale estimation were obtained usingLthebs solution. b was
set to4.8. A variant of theTUKEY M-ESTIMATOR that was found useful for the non-symmetric noise
distribution was the combination of thf&KEY M-ESTIMATOR weights functionw with the covariance
matrix W by usingiWdiag(w) as the new weight function. See [13, 6, 17]

2 The proposedLP estimator

The uncertainty of each image point in space is a cors&din The vertex of the cone in located at
the camera center, and the intersection of the cone with the image planensatieeuncertainty circle
(or ellipse). The image uncertainty circle can be approximated by a simple polygon proddémgg
The intersection of two rays from a stereo pair is is a convex polyhedrdpispace. Fig. 1 shows the
polyhedron obtained by using a rectangular uncertainty shape (The uncertainty of a pixel for example).
The polyhedron shape is a function of point location in the image planes and the image uncertainty

5



radius. This setup can also be used to express the uncertainty of point in a single adatd) -
by bounding the polygon with a global bounding cube (the room walls for example) or with a near-far
planes.

Let V; be the vertices of some polyhedron, then any péintithin the polyhedron can be expressed
as a convex combination:

P o= ) VS (6)

J
0 < S5<1, ) S=1
J

Given Eq. 6 The mapping of a model poilt; to the (unknown) 3D point; by an affine transforma-
tion F' can be expressed using the bounding polyhedifas:

FM; = ) (Vi);(Si); 7
J
0 < (8); <1, Z(Si)j =1
J

Plugging Eqg. 7 into theAD estimator results in the following linear program, - the propasegose estimator.

Min =y (rf)e + (r )o + 1)y + (7 )y + () + (7)) (8)

(FM;)s + (Tj)w —(r; )e = (Pi)a

(FM;)y + (Tj)y = (ri )y = (P)y

(FM;). + (T:r)y —(r; ). = (B)-
rj,r;ZO, 0< (Si)j=1

The value of the error function of thee pose estimator is zero error if maps all model points somewhere
within their corresponding polyhedron. There is no preferred point within the polyhedron - which is an advan-
tage, especially when coping with systematic bias errors. In the case that a model point is mapped outside its
corresponding polyhedron, the estimator will select the closesifn sense) point within the polyhedron as the
corresponding point and thie, distance between the selected point and the warped model point will be added to
the error value.

3 Selecting the radius of image uncertainty

The radius of the image uncertainty circle is used bythe estimator as well as by the the propos@edesti-
mator. A good selection of the radius of uncertainty circle would be one that matches the uncertainty of the inliers
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only - due to noise. It should produce small, yet greater than zero error values far thgtimator, since a zero
error may indicate too much freedom that can cause inaccurate pose estimation. The radius of image uncertainty
circle can be selected by:

1. For a given a-priory knowledge of noise parameters, the radius is according to the expectancy of the noise
magnitude.

2. If no a-priory knowledge in given - but the accuracy of the estimation can be tested (kRkevgnc) then
the radius can be determined by binary search over a predefined region.

3. Otherwise a robust scale estimator such as Eg. 5 can be used.

4 Tests

All tests were conducted in a simulative environment with known ground truth, known calibration and known
matching for the inliers. The scale was set so @atworld measurements can be regarded as millimeters and
2D image measurements in pixels. Simulated image resolutiorbas 500 pixel, and “automatic zoom” was
used to keep the model image span the full pixel range. The simulated stereo rig had basédineraf two
identical parallel cameras (due to the large field of view used) and focal lengtmof.. The field of view in the
tests wasl5? and for the large field of view80°. The model consisted df0 points located on a grid volume of
4meter®. Model points were centered at the origin and had small additive noise added to them to break possible
regularities. The pose of the model was randomly selected within rotatieri @f and translation of=100mm
Two basic types of errors were induces:

Noise - Additive, "small” magnitude (up to 4 pixels), uniform distributed, zero mean noise.

Outliers - Additive, "large” magnitude (up to full size of image in magnitude), uniform distributed, positive
(non-zero mean) noise.

The proposedp estimator (Tagged as “LP”) was compared to the following algorithms:
1. Stereo reconstruction without using model. Tagged as “RAW” and given as a reference.

2. Pose estimation by the least squares estimator. Tagged as “BLS”, The common frame algorithm for least
squares is also presented tagged as “LSQ".

3. Pose estimation by the weighted least squares estimator, using covariance matrices. Tagged as “WLS”. The
covariance matrices were calculated using the same data that was used by the prepestaator.

4. Pose estimation bymeEDS estimator. 500 iterations were used to give practically guaranteed outlier rejec-
tion (but not noise). Tagged as “LMedS”.

5. Pose estimation bi A D estimator. Tagged as “LAD”.

6. Pose estimation byUKEY BI-WEIGHT M-ESTIMATOR. Tagged as “Tukey”. TheMEDS solution was used
as the initial guess for theUKEY M-ESTIMATOR.

7. Pose estimation by a variant of theKeEy M-ESTIMATOR that used covariance matrices as well, which
produced good results in some cases. Tagged as “TWLS".
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The checking criteria (compared to the ground truth before added noise and outliers) include:

1. Average and maximum absolute error between the ground truth and the warped model points according to
the recovered pose. (The maximum error was selected for it implication on safety consideration in robotics).

2. Absolute difference of translation vector (for X,Y and Z).

3. Absolute difference of rotation axis (in degrees), and rotation angle about the axis (meaningful only if the
difference in the rotation axis is small).

Each test was repeated several times, with different random selections each time. In cases where the results
looked alike - the first result appear in the paper. In cases where different random selection cause significantly
difference in the result - the first representative of each case is shown. The best results(s) in each case (judged
by warped model errors), the second best result(s) and the worst result are marke®lawl retereo data was
excluded from ranking as it is given as a reference only.

4.1 Noise resistance test

In this test, additive uniform, zero mean noise was added to both images. Table 1 shows the result for maximum
noise amplitude betwe% ... 2 pixels. We can see that:

1. Even for the lowest noise level tiaw stereo reconstruction has significant error - caused by the non
optimal setting of the stereo rig.

2. TheLsQ estimator did not provide the best result due to the non-Gaussian distribution of the noise.

3. ThewLs and theTUKEY wLS variant estimators provided the best estimate due to use of covariance
matrices.

4. TheLMEDS estimator usually provided the worst results since all points had additive noise and due to its
small support. (ThevLs begins showing good results at about 20 points - which is already too costly for
LMEDS).

5. TheLp estimator provided the second best results. It was the only estimator to be at the same order of error
magnitude as the best estimators. It is clearly different thanAbe estimator.

4.2 Outliers resistance test

In this test, strong, additive uniform, positive (non zero mean) noise was added to the images. The
maximum noise level was)0 pixels. Different number of outliers were tested, from a single outlier to
50% outliers. Tables 2, 3 show the result for the outliers test. We can see that:

1. TheLMEDS estimator and th&UKEY M-ESTIMATOR estimator (withtMEDS result used as an
initial guess) provided the best result.

2. TheLAD estimator provided the second best result, followed by thestimator.



Noise Level: Model Error Translation Error Rotation Error

1/100 Pixel| Estimator Avr Max X Y Z | Axis | About
RAW 1.809 18.191

LSQ 0.113 0.302 0.001| 0.031 -0.293| 0.004| 0.000

BLS 0.111 0.301 0.001| 0.031 -0.293| 0.003| 0.000

Best >> | WLS 0.011 0.026 0.009| 0.008 0.016| 0.003| 0.000

LMedS 0.633 1.874| -0.660| 2.189 0.397| 0.271| -0.025

Tukey 0.066 0.243 0.079| 0.220 0.115] 0.025| -0.001

Best >> | TWLS 0.011 0.025 0.008| 0.007 0.016| 0.003| 0.000

2ndBest >> | LP 0.034 0.057 0.027| 0.050 0.030| 0.007| 0.000

LAD 0.369 0.634| -0.029| -0.166 0.375| 0.061| 0.001

Noise Level: Model Error Translation Error Rotation Error

1/2 Pixel | Estimator Avr Max X Y Z | Axis | About
RAW 92.290| 963.342

LSQ 13.408 45.741| 10.273| -55.591| -21.364| 6.133| 0.323

BLS 13.564 44.147| 10.273| -55.591| -21.364| 5.828| 0.308

Best >> | WLS 0.375 1.267| -0.104| 0.623 0.140| 0.176| 0.004

LMedS 12.234 25.086| -30.495| -8.716| -10.698| 3.217| -0.011

Tukey 10.372 35.535| -21.900| -10.043| -21.822| 3.080| 0.009

Best >> | TWLS 0.435 1.499| -0.348| 0.690 0.152| 0.217| 0.004

2ndBest >> | LP 1.425 4,331 0.465 1.952 -0.850| 0.093| 0.022

LAD 8.252 24.580| -13.879| -2.843| -18.381| 1.793| 0.020

Noise Level: Model Error Translation Error Rotation Error

1 Pixel | Estimator Avr Max X Y Z | Axis | About
RAW 168.183| 1387.741

LSQ 14.814 42.577 2.788| 10.394| -37.582| 0.814| -0.065

BLS 14.694 42.582 2.788| 10.394| -37.582| 0.797| -0.067

Best >> | WLS 1.140 3.112| -0.651| 0.840 0.798]| 0.222| -0.003

LMedS 29.457 73.773| 61.861| 0.600| 33.393|3.431| 0.695

Tukey 7.942 26.050 3.363| 19.819| -15.533| 1.736| -0.136

Best >> | TWLS 1.128 2.617| -0.804| 1.583 0.862| 0.113| -0.008

2ndBest >> | LP 2.932 9.981 0.062| -1.439 0.443| 1.040| 0.028

LAD 9.444 27.931| -2.572| -19.194 7.909| 3.296| 0.286

Noise Level: Model Error Translation Error Rotation Error

2 Pixels | Estimator Avr Max X Y Z | Axis | About
RAW 322.225| 3487.358

LSQ 42.226| 117.004| -2.136| 22.557| -109.680| 0.999| -0.143

BLS 41.955| 117.310| -2.136| 22.557| -109.680| 1.054 | -0.148

Best >> | WLS 3.110 10.089| -1.587| 0.521 1.056| 0.887| 0.012

LMedS 66.939| 158.797| 139.507| 2.509| -73.861| 7.002| 1.385

Tukey 56.196| 170.891| -44.190| 38.413| -137.884| 4.960| -0.376

Best >> | TWLS 2.930 8.785| -1.981| 2.500 1.232| 0.604| 0.001

2ndBest >> | LP 7.786 18.776 5.453| 17.528 -3.897| 1.191| -0.032

LAD 47.899| 150.735| 18.134| 22.658| -120.281| 5.341| -0.242

Table 1. Noise resistance test results. See text.
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3. The least squares and weighted least squares were completely broken by the outliers.

4. The influence of the outlier on the covariance matrix overtooR theey M-ESTIMATORweIghts
causing theUKEY M-ESTIMATOR Vvariant to fail as well.

5. TheLAD and theLP began to break down d6%.

4.3 Combined error test

In this test, noise and outliers error were combined. Table 4 shows the result for the combined test.
We can see that ther estimator produced the best result until leveB6f outliers. (See future plans
below).

4.4 \Wide field of view test

The combined error test was repeated - this time for field of view&#°. The results appear in
Table 5. The advantage of the estimator increases and it produced the best results for all cases.

5 Future plans - Enhancing theLp estimator

The currentp estimator is a single iteration estimator that uses all data points with equal weights. In
order to improve robustness - random sampling can be used. In order to improve accuracy - iterative re-
weighting can used. Since the estimator have better resistance to outliers them based estimators,
it is possible to allow some outliers into the data set. By doing so Equation 2 becomes:

1—[1- S,>j1— S—J’) 9

( > (5)ea-a ©
where s is the number of selected points ands the maximum number of allowed outliers. For

example, it is quite feasible to selext points while reducing the number of outliers fr@®i% to 20%.

Weights can be selected in a similar manner toth&EY M-ESTIMATOR weights. Fortunately, the

standard objective function of a linear program is already formed with a weight vetfon:: C'X.

We just add the vectar' to the linear program. The vect6r code both weights and random selection

(by assigning zero weight to n on selected points). (Most linear program solvers optimize constraints

with zero effect on the objective function, so the efficiency is not affected by zero weight values). Note

that this section also applies to thedD estimator.

6 Conclusions

1. As expected, the maximum likelihood estimators (svas) produced the best estimations in the
presence of noise (zero mean noise, not necessarily Gaussian). The robust estimators (such as
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Outliers: Model Error Translation Error Rotation Error
1 | Estimator Avr Max X Y Z AXis About

RAW 15.898| 2024.944
LSQ 23.180 74.252 -89.455| 50.472 -7.990| 4.744 -1.016
BLS 23.181 74.182 -89.455| 50.472 -7.990| 4.740 -1.015
WLS 33.218 110.224 39.925| 117.020 26.050| 13.710 0.304
Best >> | LMedS 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
Best >> | Tukey 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
TWLS 45.068 82.139 8.126| 82.139 44.938| 0.000 0.000
2ndBest >> | LP 0.089 0.246 -0.080 0.128 -0.070| 0.031 0.001
LAD 0.282 0.768 -0.744 -0.234 0.304| 0.089 -0.001
Outliers: Model Error Translation Error Rotation Error
10 | Estimator Avr Max X Y Z AXxis About

RAW 226.326| 6563.388
LSQ 160.496 454.014| 186.285| -67.371| -353.152| 4.125 -1.324
BLS 161.660 450.713| 186.285| -67.371| -353.152| 4.025 -1.298
WLS 3020.721| 7003.426| 2567.422| -265.045| -3246.323| 54.197| -156.784
Best >> | LMedS 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
Best >> | Tukey 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
TWLS 1523.436| 3173.990| 512.954| -883.363| -3173.990| 0.000 0.000
LP 0.173 0.558 -0.463 0.116 -0.274| 0.027 0.007
2ndBest >> | LAD 0.002 0.004 0.003 -0.001 -0.001| 0.000 0.000
Outliers: Model Error Translation Error Rotation Error
30 | Estimator Avr Max X Y Z AXxis About
LSQ 508.483| 1471.398 -8.416| 302.877| -1296.576| 69.448 -0.940
BLS 508.633| 1460.329 -8.416| 302.877| -1296.576| 70.357 -0.794
WLS 3286.981| 9146.010| -1052.119| 382.434| 2836.719| 23.806| -173.704
Best >> | LMedS 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
Best >> | Tukey 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
TWLS 1209.244| 2904.940| -434.435| 288.356| -2904.940| 0.000 0.000
LP 0.486 1.165 -0.137 0.111 -1.116| 0.024 0.000
2ndBest >> | LAD 0.002 0.005 -0.001 0.001 0.004| 0.000 0.000
Outliers: Model Error Translation Error Rotation Error
45 | Estimator Avr Max X Y Z AXxis About

RAW 1014.901| 6427.995
LSQ 705.569| 2071.503 97.802| 218.575| -1871.529| 41.406 0.324
BLS 713.984| 2060.130 97.802| 218.575| -1871.529| 40.941 0.591
WLS 3644.573| 10070.096| -1219.469| -486.973| 1899.952| 42.737| -173.704
Best >> | LMedS 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
Best >> | Tukey 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
TWLS 840.651| 1907.990 -66.158| 547.805| -1907.990| 0.000 0.000
LP 10.872 30.298 -0.809 0.573 -29.396| 0.100 0.019
2ndBest >> | LAD 0.008 0.025 0.009 0.016 -0.006| 0.003 0.000

Table 2. Oultliers resistance test results. See text.
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Outliers: 45 Model Error Translation Error Rotation Error
Estimator Avr Max X Y Z AXis About
RAW 1022.459| 7436.217
LSQ 816.918| 2743.550| 486.938| 1516.712| -1475.456| 76.481| -16.618
BLS 817.529| 2708.373| 486.938| 1516.712| -1475.456| 76.741| -16.275
WLS 3859.806| 11371.681| 41.487| -909.021| 1120.821| 87.550| -171.161
Best >> | LMedS 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
Best >> | Tukey 0.000 0.000 0.000 0.000 0.000| 0.000 0.000
TWLS 692.503| 1319.766| -73.745| 683.999| -1319.766| 90.000 0.000
LP 189.048 734.462| 231.241| 674.088| -156.541| 78.969 -7.978
LAD 189.121 732.005| 231.881| 669.770| -161.131| 79.044 -7.882

Table 3. Oultliers resistance test results. See text.

LMEDS) produced the best estimations in the presence of outliers without any noisep Tesi-

mation was better than the maximum likelihood estimations in the presence of outliers and better
than the robust estimations in the presence of noise and better then both in the presence of noise
and outliers - especially for wide field of view.

2. TheLP estimator was tested with maximum possible outlier error (in magnitude) within the frame
of the image - no leverage point cases were observed - this result complies with previous results
that appeared in [*].

3. The currentp estimator which is single iteration, uniform weight and includes all data points can
be enhanced to exploit random sampling and iterative re-weighing within the standard framework
of linear programming.

References

[1] K. Arun, T. Huang, and S. Blostein.
September 1987.

[2] V. Chvatal. Linear Programming W.H. Freeman and CO., New York, 1983.

[3] O. Faugeras and M. Hebert. The representation, recognition, and positioning of 3-d shapes from range data.
In 3DMV87, pages 301-353, 1987.

[4] M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartogragbgmmunications of the ACN4(6):381-395, June 1981.

[5] C.V.L.G.H. Golub. Matrix computation J.H. University Press, Baltimore, USA, 1993.

[6] R. P. Hampel F.R., Ronchetti E.M. and S. W.Robust Statistics: The Approach based on influence Func-
tions New York: John Wiley, 1986.

[7] R. Haralick and H. Joo. 2d-3d pose estimation|@PR88 pages 385-391, 1988.

[8] R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim. Pose estimation from corresponding point
data.SMC 19(6):1426-1446, November 1989.

[9] Y. Hel-Or and M. Werman. Pose estimation by fusing noisy data of different dimendpdigl, 17(2):195—
201, February 1995.

Least-squares fitting of two 3-d point sBsMI, 9(5):698-700,

12



Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 10 | Estimator Avr Max X Y Z AXis About
RAW 330.354| 6461.861

LSQ 211.162| 720.278| 244.663| -332.714| -465.684| 57.474 0.137

BLS 209.737| 711.218| 244.663| -332.714| -465.684| 55.605 0.215

WLS 3341.308| 5777.464| -634.204| 275.104| -5077.698| 31.155| -172.429

LMedS 12.949 26.111 -13.468 6.468 14.576| 1.925 0.001

2ndBest >> | Tukey 7.904 27.983 -25.376 -14.596 11.418| 3.599 0.015

TWLS 937.255| 1455.670| 274.821| 1080.893| -1455.206| 0.087 0.009

Best >> | LP 2.215 7.201 -0.113 -5.457 -2.897| 1.057 0.044

2ndBest | LAD 8.449 23.724 -12.685 -32.129 -1.661| 4.989 0.148

Noise: 1 Model Error Translation Error Rotation Error

Outliers: 10 | Estimator Avr Max X Y Z AXxis About
RAW 410.494| 6462.574

LSQ 208.935| 713.489| 248.853| -323.641| -460.194| 56.965 0.160

BLS 207.474| 704.142| 248.853| -323.641| -460.194| 55.037 0.238

WLS 3354.821| 5823.751| -794.238| 464.793| -5064.401| 31.989| -169.974

LMedS 75.463| 204.472| -194.590 -67.718| 113.134| 21.553 0.601

2ndBest >> | Tukey 12.569 35.132 -49.394 -29.450 -2.073| 7.187 0.029

TWLS 1033.217| 1709.669| 307.170| 1081.765| -1708.412| 0.254 0.021

Best >> | LP 4,264 14.712 -1.869 -9.889 -6.171| 1.996 0.081

LAD 16.914 48.689 -24.899 -66.783 -4.251 | 10.224 0.263

Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 20 | Estimator Avr Max X Y Z AXxis About
RAW 534.974| 6457.304

LSQ 317.323| 900.667 -60.901 15.641| -868.523| 6.686 0.140

BLS 311.001| 899.635 -60.901 15.641| -868.523| 6.717 0.041

WLS 3478.124| 5790.135| -191.580| -322.390| -5459.968| 34.674| -171.707

LMedS 27.519 83.162 -64.810| 107.649 9.294| 8.835 -1.079

2ndBest >> | Tukey 8.830 28.039 11.958 0.238 -21.447| 1.666 0.014

TWLS 1037.784| 2158.402| 262.833| 691.552| -2157.532| 0.200 -0.014

Best >> | LP 3.745 10.453 -4.840 0.323 -7.248| 0.751 -0.015

LAD 24.196 77.657 17.441 -13.986 -59.051| 3.699 0.178

Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 30 | Estimator Avr Max X Y d AXis About
RAW 760.803| 6462.767

LSQ 524.166| 1726.181| -578.041| -433.829| -1216.117| 70.138 -3.891

BLS 520.750| 1712.118| -578.041| -433.829| -1216.117| 68.799 -3.778

WLS 4472.985| 8330.073| -1299.379| -1295.965| -8079.397| 33.428| -167.652

2ndBest >> | LMedS 16.647 59.631 54.875 3.462 -29.917| 8.572 0.000

Best >> | Tukey 14.425 49.392 -1.603 -65.567 -18.837| 8.063 0.376

TWLS 789.280| 1256.991| 444.825| 1256.446| -664.966| 0.248 0.007

LP 26.023 92.428 -70.492 -39.799 -44.107| 10.513 0.202

LAD 39.923| 135.584 -65.520 -31.254 -84.921| 11.804 0.179

Table 4. Combined Noise and Outliers resistance test results. See text.
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Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 10 | Estimator Avr Max X Y Z AXis About
RAW 540.999| 6085.128

LSQ 149.257 494.011| 144.449| -122.759| -328.790| 36.367 0.671

BLS 149.452 485.989| 144.449| -122.759| -328.790| 34.432 0.672

WLS 2311.542| 6197.539| -1076.314| 1203.634| -1669.289| 30.416| -160.070

LMedS 136.350 308.560 66.910 -31.657| -280.050| 5.013 -0.835

Tukey 43.952 124.268 -58.412 40.524 -78.515| 7.686 -0.400

TWLS 1427.543| 2133.874| -728.787| 2122.566| -1424.366| 1.362 0.078

Best >> | LP 8.570 23.198 -4.450 4.890 -8.686| 2.441 0.118

2ndBest >> | LAD 24.561 65.739 -2.359 -3.416 -37.169| 4.548 -0.544

Noise: 1 Model Error Translation Error Rotation Error

Outliers: 10 | Estimator Avr Max X Y Z AXis About
RAW 1010.969| 26429.873

LSQ 554.204| 2049.524| 812.911| -673.969| -877.471| 75.363| -12.393

BLS 548.012| 1982.529| 812.911| -673.969| -877.471| 76.089| -11.444

WLS 2435.348| 6633.286| -1186.128| 2156.349| -1824.252| 29.462| -158.329

LMedS 278.094 863.033| -127.341 -50.840| -665.746| 43.113 0.046

Tukey 477.633| 1747.181| 628.401| -523.574| -808.699| 75.444 -8.878

TWLS 1587.257| 2959.155| -216.615| 2922.414| -1615.280| 5.196 0.056

Best >> | LP 42.467 125.347 3.214 17.726| -104.093| 4.168 -0.278

LAD 149.153 446.592 -13.903 9.976| -329.151| 78.027 -2.051

Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 20 | Estimator Avr Max X Y Z AXis About
RAW 644.872| 7978.731

LSQ 222.049 704.285 38.317 -86.282| -595.499| 25.763 0.750

BLS 218.571 688.169 38.317 -86.282| -595.499| 22.022 0.708

WLS 3290.707| 7875.635| -3935.027| -2673.111| -2663.154| 28.169| -168.929

LMedS 187.139 469.149 58.104 24.594| -410.256| 12.638 -0.308

Tukey 1295.181| 2464.983| 949.616| -1625.748| 1940.417| 45.014 -4.116

TWLS 2602.932| 5943.315| 958.470| 5937.370| -909.445| 0.749 0.026

Best >> | LP 31.054 111.478 -45.373 27.961 -50.135| 12.499 -0.273

2ndBest >> | LAD 82.355 243.906 -14.799 21.514| -219.603| 6.353 0.147

Noise: 1/2 Model Error Translation Error Rotation Error

Outliers: 30 | Estimator Avr Max X Y Z AXis About
RAW 749.124| 4368.621

LSQ 311.688 998.178| -350.897| -116.254| -695.196| 50.792 -2.239

BLS 310.007 992.931| -350.897| -116.254| -695.196| 50.034 -2.296

WLS 2751.972| 7107.815| -3003.917 -1.453| -2270.162| 35.341| -171.986

LMedS 218.722 778.933| -325.832| 440.850| -114.510| 60.658 -8.958

Tukey 110.744 342.292 -97.494| 138.649| 228.195| 16.395 -1.663

TWLS 1964.493| 4265.691| 448.350| 4255.876| -1184.232| 0.971 0.077

Best >> | LP 62.339 216.881| -114.129 26.686 -94.911| 25.224 -1.053

2ndBest >> | LAD 86.095 280.483 -45.449 8.512| -217.496| 13.088 -0.300

Table 5. Wide FOV test test results. See text.
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