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Abstract

Given a3D object and some measurements for points in this object, it is desired to find the3D location
of the object. A new model based pose estimator from stereo pairs based on linear programming (LP)
is presented. In the presence of outliers, the newLP estimator provides better results than maximum
likelihood estimators such as weighted least squares, and is usually almost as good as robust estimators
such asLMEDS. In the presence of noise the newLP estimator provides better results than robust
estimators such asLMEDS, and is slightly inferior to maximum likelihood estimators such as weighted
least squares. In the presence of noise and outliers - especially for wide angle stereo - the new estimator
provides the best results.

TheLP estimator is based on correspondence of a points to convex polyhedrons. Each points corre-
sponds to a unique polyhedron, which represents its uncertainty in3D as computed from the stereo pair.
Polyhedron can also be computed for2D data point by using a-priori depth boundaries.

TheLP estimator is a single phase (no separate outlier rejection phase) estimator solved by single
iteration (no re-weighting), and always converges to the global minimum of its error function. The
estimator can be extended to include random sampling and re-weighting within the standard frame work
of a linear program.

1 Introduction

Model based pose estimation is a well studied problem in computer vision and in photogrametry,
where it is called:absolute orientation. The objective of the problem is finding the exact location of a
known object in3D space from image measurements.
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Numerous references regarding pose estimation appear in the literature, see [16, 8, 19].
Pose estimation problem consists of several sub-problems, including:

1. Feature type selection - points and lines are commonly used [3, 18].

2. Measurement type selection -3D features to3D features,2D features to3D features or a combi-
nation of2D features and3D features [7, 9, 10].

3. Estimator selection - least squares, kalman filter, hough transform [9, 10, 12, 1].

This paper is focused on the estimator part for measurements obtained by a stereo head. The proposed
estimator is based on point to polyhedron correspondence using linear programming. The estimator was
tested for non-optimal conditions including strong non-Gaussian noise, outliers, and wide field of view
(up to�80o). The proposed linear-programming (LP) estimator is compared to the following estimators:

1. Least squares -L2 based estimator (LSQ).

2. Weighted least squares (WLS) using covariance matrices.

3. Least absolute differences -L1 based estimator (LAD)

4. Least median of squares (LMEDS or LMS)

5. TUKEY BI -WEIGHT M-ESTIMATOR which uses theLMEDS solution as its initial guess.

6. A variant of theTUKEY M -ESTIMATOR that uses covariance matrices as well.

Next we briefly describe each of the above estimators. Section 2 describes the proposedLP estimator.
Section 4 describes the testing procedure and test results. Section 5 describes future enhancements of
the proposed estimator. The following notation is used: given two sets of points in3D, fMig - the model
points andfPig - the measurements we want to find a rigid3D transformation: a rotation matrixR and
a translation vectorT that minimizes the distance between(T +RP ) andM .

1.1 Least square pose-estimator

The error function is
P

i kT +RPi �Mik2. To find the transformation we defineSi = Pi � �P ,
Qi = Mi � �M were �P ; �M are the averages offPig andfMig respectively. IfU�V > = SV D(SQ>)

then the rotation matrixR is given byR = UV > and the translation vectorT is given byT = �M �R �P .
See [5]. Since we would like to use a common framework for our comparison for non least-squares
estimators as well, we use the following three stage algorithm and present its result forLSQ as well.

1. We seek an affine transformationF which minimizes some error function. ForLSQ the error
function is:

P
i k(Mi � FPi)k2. For LSQ F is recovered byF = (A>A)#A>b where: A =

[M>

1 ; : : :M
>

n ]
>, b = P> and ’#’ denotes pseudo inverse.
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Figure 1. Stereo uncertainty polyhedron - The shape of each polyhedron is a function of the point-rig

geometry and the radius of error in the image plane.

2. The rotation part ofF denoted asFr is projected onto the closest (in the least-squares sense)
rotation matrixR = UV > whereU�V > = SV D(Fr). The determinant ofR is checked to
eliminate reflections (det(R) = �1). The step is common for all estimators.

3. The translation is then recovered. ForLSQ by T = �M �R �P . For other estimators by warping the
model according toR and then solving for translation.

1.2 Weighted least squares estimator

In WLS we seek an affine transformationF that minimizes:
P

i(b�AF )
>W (b�AF ). F is recovered

by F = (A>WA)#A>Wb. WhereW , the weight matrix is a block diagonal matrix, each block is a
3 � 3 covariance matrixWi of the corresponding pair(Mi; Pi). Wi is computed as follows: forpi; qi -
the projection of the (unknown)3D pointPi onto the two stereo images, we use the bounding rectangles
[(pi)x � r; (pi)y � r], [(qi)x � r; (qi)y � r]; to compute a 3D bounding polyhedronD for Pi. The weight
matrixWi is taken as the covariance matrix of the eight vertices ofDi with respect toX, Y , andZ
coordinates. See Fig. 1. The radiusr is a tunable parameter which will be discussed later in the article.
The shape of the polyhedron is dependent upon point location with respect to the stereo head and the
image uncertainty radius. This shape varies from point to point and it is not symmetric even though the
image uncertainty radiusr is symmetric. For this reason a simple least squares does not provide the best
estimation.

1.3 Least of absolute differences estimator

In LAD we seek an affine transformationF that minimizes the error function:
P

i k(Mi � FPi)k1. F
is recovered by solving the following linear programming problem:
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Min :
X
i

(r+i )x + (r�i )x + (r+i )y + (r�i )y + (r+i )z + (r�i )z (1)

Subject to

(Mi � FPi)x + (r+i )x � (r�i )x = 0

(Mi � FPi)y + (r+i )y � (r�i )y = 0

(Mi � FPi)z + (r+i )y � (r�i )z = 0

r+i ; r
�

i � 0

In linear programming all variables are non-negative, therefore a real typed variablex is represented
by a pair of non negative variables:x = (x+ � x�). This holds for the elements ofF as well (not
explicitly shown) and for theresidual error slack variables(ri)x;y;z.

At the global minimum pointwe get eitherr+ = 0 or r� = 0 for each pair, and hence
P

(r+ + r�)

is the sum of least absolute differences [2].LAD has been successfully used for motion recovery in the
presence of noise and outliers, however since theLAD error function is symmetric, and the uncertainty
shape in 3D is not, theLAD is not fully suitable to the pose estimation problem.LAD, like other M-
estimators, has a breakdown point of zero due toleverage points, therefore it is not considered a robust
estimator. In the experiments we used strong outliers - up to the maximum possible range within image
boundaries, trying to break theLAD estimator by leverage points. Although we managed to break it
down when the number of outliers exceeded a certain point (above 40%) we did not see leverage point
symptoms. This result complies with earlier results [*]. We believe that this is due to the fact that the
error was bounded by the image size.

1.4 Least median of squares estimator

In LMEDS we seek an affine transformationF that minimizes:median(kMi � FPik2). LMEDS is
a robust estimator in the sense of its breakdown point which is 0.5 - the largest value possible. Unfor-
tunately, deterministic algorithms forLMEDS have exponential time complexity. To solve this problem
a probabilistic algorithm by random sampling is used: several model estimations are recovered by d-
ifferent random samples. The residual error is computed for each estimation and the estimation with
the lowest median of squares is selected as theLMEDS estimation. This probability of the algorithm’s
success is:

P = 1�
�
1� (1� q)k

�n
(2)

where: q is the probability of choosing an outlier.k is the number of guesses needed for model
recovery andn is the number of iterations. However, this analysis assumes that the data points are
dichotomic - each data point is either an outlier, or a perfectly good inlier. This assumption does not
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hold in the presence of noise and it affects the accuracy of the algorithm. Note that the time complexity
of the probabilistic algorithm grows exponentially withk, thus trying to reduce the noise influence by
enlarging the support is very costly. See [14, 15, 4, 11, 17].

1.5 Tukey Bi-weight M-estimator

In TUKEY M -ESTIMATOR we seek an affine transformationF that minimizes:

P
i � (kMi � FPik=�i) (3)

�(u) =

(
b2

6
[1� (1� (u

b
)2)3] juj � b

b2

6
juj > b

Where�(u) is the loss function,b is a tuning parameter and�i the scale associate with the value of the
residual errorri;F = kMi � FPik of the inliers. Equation 3 is often solved by an “iterative re-weighted
least-squares” [13] with the following weight function:

w(u = ri;F=�̂) =  (u)=u (4)

 (u) = �(u)0 =

(
u[1� (u

b
)2]2 juj � b

0 juj > b

Where�̂ is a scale estimate. The following scale estimation was used in the test

�̂ =
NX
i=1

wiri;F
N

(5)

The initial guess ofwi and the scale estimation were obtained using theLMEDS solution. b was
set to4:8. A variant of theTUKEY M -ESTIMATOR that was found useful for the non-symmetric noise
distribution was the combination of theTUKEY M -ESTIMATOR weights functionw with the covariance
matrixW by usingWdiag(w) as the new weight function. See [13, 6, 17]

2 The proposedLP estimator

The uncertainty of each image point in space is a cone in3D. The vertex of the cone in located at
the camera center, and the intersection of the cone with the image plane is theimage uncertainty circle
(or ellipse). The image uncertainty circle can be approximated by a simple polygon producing a3D ray.
The intersection of two rays from a stereo pair is is a convex polyhedron in3D space. Fig. 1 shows the
polyhedron obtained by using a rectangular uncertainty shape (The uncertainty of a pixel for example).
The polyhedron shape is a function of point location in the image planes and the image uncertainty
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radius. This setup can also be used to express the uncertainty of point in a single image (2D data) -
by bounding the polygon with a global bounding cube (the room walls for example) or with a near-far
planes.

Let Vi be the vertices of some polyhedron, then any pointP within the polyhedron can be expressed
as a convex combination:

P =
X
j

VjSj (6)

0 � Sj � 1;
X
j

Sj = 1

Given Eq. 6 The mapping of a model pointMi to the (unknown) 3D pointPi by an affine transforma-
tionF can be expressed using the bounding polyhedronVi as:

FMi =
X

j

(Vi)j(Si)j (7)

0 � (Si)j � 1;
X

j

(Si)j = 1

Plugging Eq. 7 into theLAD estimator results in the following linear program, - the proposedLP pose estimator.

Min :
X

i

(r+i )x + (r�i )x + (r+i )y + (r�i )y + (r+i )z + (r�i )z (8)

Subject to

Pi =
X

j

(Vi)j(Si)j

(FMi)x + (r+i )x � (r�i )x = (Pi)x

(FMi)y + (r+i )y � (r�i )y = (Pi)y

(FMi)z + (r+i )y � (r�i )z = (Pi)z

r+i ; r
�

i � 0; 0 � (Si)j � 1;
X

j

(Si)j = 1

The value of the error function of theLP pose estimator is zero error iffF maps all model points somewhere
within their corresponding polyhedron. There is no preferred point within the polyhedron - which is an advan-
tage, especially when coping with systematic bias errors. In the case that a model point is mapped outside its
corresponding polyhedron, the estimator will select the closest (inLAD sense) point within the polyhedron as the
corresponding point and theL1 distance between the selected point and the warped model point will be added to
the error value.

3 Selecting the radius of image uncertainty

The radius of the image uncertainty circle is used by theWLS estimator as well as by the the proposedLP esti-
mator. A good selection of the radius of uncertainty circle would be one that matches the uncertainty of the inliers
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only - due to noise. It should produce small, yet greater than zero error values for theLP estimator, since a zero
error may indicate too much freedom that can cause inaccurate pose estimation. The radius of image uncertainty
circle can be selected by:

1. For a given a-priory knowledge of noise parameters, the radius is according to the expectancy of the noise
magnitude.

2. If no a-priory knowledge in given - but the accuracy of the estimation can be tested (like inRANSAC) then
the radius can be determined by binary search over a predefined region.

3. Otherwise a robust scale estimator such as Eq. 5 can be used.

4 Tests

All tests were conducted in a simulative environment with known ground truth, known calibration and known
matching for the inliers. The scale was set so that3D world measurements can be regarded as millimeters and
2D image measurements in pixels. Simulated image resolution was500 � 500 pixel, and “automatic zoom” was
used to keep the model image span the full pixel range. The simulated stereo rig had base line of150mm, two
identical parallel cameras (due to the large field of view used) and focal length of10mm. The field of view in the
tests was45o and for the large field of view:80o. The model consisted of100 points located on a grid volume of
4meter3. Model points were centered at the origin and had small additive noise added to them to break possible
regularities. The pose of the model was randomly selected within rotation of�10o and translation of�100mm

Two basic types of errors were induces:

Noise - Additive, ”small” magnitude (up to 4 pixels), uniform distributed, zero mean noise.

Outliers - Additive, ”large” magnitude (up to full size of image in magnitude), uniform distributed, positive
(non-zero mean) noise.

The proposedLP estimator (Tagged as “LP”) was compared to the following algorithms:

1. Stereo reconstruction without using model. Tagged as “RAW” and given as a reference.

2. Pose estimation by the least squares estimator. Tagged as “BLS”, The common frame algorithm for least
squares is also presented tagged as “LSQ”.

3. Pose estimation by the weighted least squares estimator, using covariance matrices. Tagged as “WLS”. The
covariance matrices were calculated using the same data that was used by the proposedLP estimator.

4. Pose estimation byLMEDS estimator. 500 iterations were used to give practically guaranteed outlier rejec-
tion (but not noise). Tagged as “LMedS”.

5. Pose estimation byLAD estimator. Tagged as “LAD”.

6. Pose estimation byTUKEY BI -WEIGHT M-ESTIMATOR. Tagged as “Tukey”. TheLMEDS solution was used
as the initial guess for theTUKEY M -ESTIMATOR.

7. Pose estimation by a variant of theTUKEY M -ESTIMATOR that used covariance matrices as well, which
produced good results in some cases. Tagged as “TWLS”.
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The checking criteria (compared to the ground truth before added noise and outliers) include:

1. Average and maximum absolute error between the ground truth and the warped model points according to
the recovered pose. (The maximum error was selected for it implication on safety consideration in robotics).

2. Absolute difference of translation vector (for X,Y and Z).

3. Absolute difference of rotation axis (in degrees), and rotation angle about the axis (meaningful only if the
difference in the rotation axis is small).

Each test was repeated several times, with different random selections each time. In cases where the results
looked alike - the first result appear in the paper. In cases where different random selection cause significantly
difference in the result - the first representative of each case is shown. The best results(s) in each case (judged
by warped model errors), the second best result(s) and the worst result are marked. TheRAW stereo data was
excluded from ranking as it is given as a reference only.

4.1 Noise resistance test

In this test, additive uniform, zero mean noise was added to both images. Table 1 shows the result for maximum
noise amplitude between1

100
: : : 2 pixels. We can see that:

1. Even for the lowest noise level theRAW stereo reconstruction has significant error - caused by the non
optimal setting of the stereo rig.

2. TheLSQ estimator did not provide the best result due to the non-Gaussian distribution of the noise.

3. The WLS and theTUKEY WLS variant estimators provided the best estimate due to use of covariance
matrices.

4. TheLMEDS estimator usually provided the worst results since all points had additive noise and due to its
small support. (TheWLS begins showing good results at about 20 points - which is already too costly for
LMEDS).

5. TheLP estimator provided the second best results. It was the only estimator to be at the same order of error
magnitude as the best estimators. It is clearly different than theLAD estimator.

4.2 Outliers resistance test

In this test, strong, additive uniform, positive (non zero mean) noise was added to the images. The
maximum noise level was500 pixels. Different number of outliers were tested, from a single outlier to
50% outliers. Tables 2, 3 show the result for the outliers test. We can see that:

1. TheLMEDS estimator and theTUKEY M -ESTIMATOR estimator (withLMEDS result used as an
initial guess) provided the best result.

2. TheLAD estimator provided the second best result, followed by theLP estimator.
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Noise Level: Model Error Translation Error Rotation Error
1/100 Pixel Estimator Avr Max X Y Z Axis About

RAW 1.809 18.191
LSQ 0.113 0.302 0.001 0.031 -0.293 0.004 0.000
BLS 0.111 0.301 0.001 0.031 -0.293 0.003 0.000

Best >> WLS 0.011 0.026 0.009 0.008 0.016 0.003 0.000
LMedS 0.633 1.874 -0.660 2.189 0.397 0.271 -0.025
Tukey 0.066 0.243 0.079 0.220 0.115 0.025 -0.001

Best >> TWLS 0.011 0.025 0.008 0.007 0.016 0.003 0.000
2ndBest >> LP 0.034 0.057 0.027 0.050 0.030 0.007 0.000

LAD 0.369 0.634 -0.029 -0.166 0.375 0.061 0.001

Noise Level: Model Error Translation Error Rotation Error
1/2 Pixel Estimator Avr Max X Y Z Axis About

RAW 92.290 963.342
LSQ 13.408 45.741 10.273 -55.591 -21.364 6.133 0.323
BLS 13.564 44.147 10.273 -55.591 -21.364 5.828 0.308

Best >> WLS 0.375 1.267 -0.104 0.623 0.140 0.176 0.004
LMedS 12.234 25.086 -30.495 -8.716 -10.698 3.217 -0.011
Tukey 10.372 35.535 -21.900 -10.043 -21.822 3.080 0.009

Best >> TWLS 0.435 1.499 -0.348 0.690 0.152 0.217 0.004
2ndBest >> LP 1.425 4.331 0.465 1.952 -0.850 0.093 0.022

LAD 8.252 24.580 -13.879 -2.843 -18.381 1.793 0.020

Noise Level: Model Error Translation Error Rotation Error
1 Pixel Estimator Avr Max X Y Z Axis About

RAW 168.183 1387.741
LSQ 14.814 42.577 2.788 10.394 -37.582 0.814 -0.065
BLS 14.694 42.582 2.788 10.394 -37.582 0.797 -0.067

Best >> WLS 1.140 3.112 -0.651 0.840 0.798 0.222 -0.003
LMedS 29.457 73.773 61.861 0.600 33.393 3.431 0.695
Tukey 7.942 26.050 3.363 19.819 -15.533 1.736 -0.136

Best >> TWLS 1.128 2.617 -0.804 1.583 0.862 0.113 -0.008
2ndBest >> LP 2.932 9.981 0.062 -1.439 0.443 1.040 0.028

LAD 9.444 27.931 -2.572 -19.194 7.909 3.296 0.286

Noise Level: Model Error Translation Error Rotation Error
2 Pixels Estimator Avr Max X Y Z Axis About

RAW 322.225 3487.358
LSQ 42.226 117.004 -2.136 22.557 -109.680 0.999 -0.143
BLS 41.955 117.310 -2.136 22.557 -109.680 1.054 -0.148

Best >> WLS 3.110 10.089 -1.587 0.521 1.056 0.887 0.012
LMedS 66.939 158.797 139.507 2.509 -73.861 7.002 1.385
Tukey 56.196 170.891 -44.190 38.413 -137.884 4.960 -0.376

Best >> TWLS 2.930 8.785 -1.981 2.500 1.232 0.604 0.001
2ndBest >> LP 7.786 18.776 5.453 17.528 -3.897 1.191 -0.032

LAD 47.899 150.735 18.134 22.658 -120.281 5.341 -0.242

Table 1. Noise resistance test results. See text.
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3. The least squares and weighted least squares were completely broken by the outliers.

4. The influence of the outlier on the covariance matrix overtook theTUKEY M -ESTIMATORweights
causing theTUKEY M -ESTIMATOR variant to fail as well.

5. TheLAD and theLP began to break down at45%.

4.3 Combined error test

In this test, noise and outliers error were combined. Table 4 shows the result for the combined test.
We can see that theLP estimator produced the best result until level of30% outliers. (See future plans
below).

4.4 Wide field of view test

The combined error test was repeated - this time for field of view of�80o. The results appear in
Table 5. The advantage of theLP estimator increases and it produced the best results for all cases.

5 Future plans - Enhancing theLP estimator

The currentLP estimator is a single iteration estimator that uses all data points with equal weights. In
order to improve robustness - random sampling can be used. In order to improve accuracy - iterative re-
weighting can used. Since theLP estimator have better resistance to outliers thanLSQ based estimators,
it is possible to allow some outliers into the data set. By doing so Equation 2 becomes:

1�

 
1�

rX
j=1

�
s

j

�
qj(1� q)s�j

!n

(9)

wheres is the number of selected points andr is the maximum number of allowed outliers. For
example, it is quite feasible to select50 points while reducing the number of outliers from30% to 20%.
Weights can be selected in a similar manner to theTUKEY M -ESTIMATOR weights. Fortunately, the
standard objective function of a linear program is already formed with a weight vector:Min : C>X.
We just add the vectorC to the linear program. The vectorC code both weights and random selection
(by assigning zero weight to n on selected points). (Most linear program solvers optimize constraints
with zero effect on the objective function, so the efficiency is not affected by zero weight values). Note
that this section also applies to theLAD estimator.

6 Conclusions

1. As expected, the maximum likelihood estimators (s.a.WLS) produced the best estimations in the
presence of noise (zero mean noise, not necessarily Gaussian). The robust estimators (such as
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Outliers: Model Error Translation Error Rotation Error
1 Estimator Avr Max X Y Z Axis About

RAW 15.898 2024.944
LSQ 23.180 74.252 -89.455 50.472 -7.990 4.744 -1.016
BLS 23.181 74.182 -89.455 50.472 -7.990 4.740 -1.015
WLS 33.218 110.224 39.925 117.020 26.050 13.710 0.304

Best >> LMedS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Best >> Tukey 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TWLS 45.068 82.139 8.126 82.139 44.938 0.000 0.000
2ndBest >> LP 0.089 0.246 -0.080 0.128 -0.070 0.031 0.001

LAD 0.282 0.768 -0.744 -0.234 0.304 0.089 -0.001

Outliers: Model Error Translation Error Rotation Error
10 Estimator Avr Max X Y Z Axis About

RAW 226.326 6563.388
LSQ 160.496 454.014 186.285 -67.371 -353.152 4.125 -1.324
BLS 161.660 450.713 186.285 -67.371 -353.152 4.025 -1.298
WLS 3020.721 7003.426 2567.422 -265.045 -3246.323 54.197 -156.784

Best >> LMedS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Best >> Tukey 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TWLS 1523.436 3173.990 512.954 -883.363 -3173.990 0.000 0.000
LP 0.173 0.558 -0.463 0.116 -0.274 0.027 0.007

2ndBest >> LAD 0.002 0.004 0.003 -0.001 -0.001 0.000 0.000

Outliers: Model Error Translation Error Rotation Error
30 Estimator Avr Max X Y Z Axis About

LSQ 508.483 1471.398 -8.416 302.877 -1296.576 69.448 -0.940
BLS 508.633 1460.329 -8.416 302.877 -1296.576 70.357 -0.794
WLS 3286.981 9146.010 -1052.119 382.434 2836.719 23.806 -173.704

Best >> LMedS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Best >> Tukey 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TWLS 1209.244 2904.940 -434.435 288.356 -2904.940 0.000 0.000
LP 0.486 1.165 -0.137 0.111 -1.116 0.024 0.000

2ndBest >> LAD 0.002 0.005 -0.001 0.001 0.004 0.000 0.000

Outliers: Model Error Translation Error Rotation Error
45 Estimator Avr Max X Y Z Axis About

RAW 1014.901 6427.995
LSQ 705.569 2071.503 97.802 218.575 -1871.529 41.406 0.324
BLS 713.984 2060.130 97.802 218.575 -1871.529 40.941 0.591
WLS 3644.573 10070.096 -1219.469 -486.973 1899.952 42.737 -173.704

Best >> LMedS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Best >> Tukey 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TWLS 840.651 1907.990 -66.158 547.805 -1907.990 0.000 0.000
LP 10.872 30.298 -0.809 0.573 -29.396 0.100 0.019

2ndBest >> LAD 0.008 0.025 0.009 0.016 -0.006 0.003 0.000

Table 2. Outliers resistance test results. See text.
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Outliers: 45 Model Error Translation Error Rotation Error
Estimator Avr Max X Y Z Axis About
RAW 1022.459 7436.217
LSQ 816.918 2743.550 486.938 1516.712 -1475.456 76.481 -16.618
BLS 817.529 2708.373 486.938 1516.712 -1475.456 76.741 -16.275
WLS 3859.806 11371.681 41.487 -909.021 1120.821 87.550 -171.161

Best >> LMedS 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Best >> Tukey 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TWLS 692.503 1319.766 -73.745 683.999 -1319.766 90.000 0.000
LP 189.048 734.462 231.241 674.088 -156.541 78.969 -7.978
LAD 189.121 732.005 231.881 669.770 -161.131 79.044 -7.882

Table 3. Outliers resistance test results. See text.

LMEDS) produced the best estimations in the presence of outliers without any noise. TheLP esti-
mation was better than the maximum likelihood estimations in the presence of outliers and better
than the robust estimations in the presence of noise and better then both in the presence of noise
and outliers - especially for wide field of view.

2. TheLP estimator was tested with maximum possible outlier error (in magnitude) within the frame
of the image - no leverage point cases were observed - this result complies with previous results
that appeared in [*].

3. The currentLP estimator which is single iteration, uniform weight and includes all data points can
be enhanced to exploit random sampling and iterative re-weighing within the standard framework
of linear programming.
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Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 10 Estimator Avr Max X Y Z Axis About

RAW 330.354 6461.861
LSQ 211.162 720.278 244.663 -332.714 -465.684 57.474 0.137
BLS 209.737 711.218 244.663 -332.714 -465.684 55.605 0.215
WLS 3341.308 5777.464 -634.204 275.104 -5077.698 31.155 -172.429
LMedS 12.949 26.111 -13.468 6.468 14.576 1.925 0.001

2ndBest >> Tukey 7.904 27.983 -25.376 -14.596 11.418 3.599 0.015
TWLS 937.255 1455.670 274.821 1080.893 -1455.206 0.087 0.009

Best >> LP 2.215 7.201 -0.113 -5.457 -2.897 1.057 0.044
2ndBest LAD 8.449 23.724 -12.685 -32.129 -1.661 4.989 0.148

Noise: 1 Model Error Translation Error Rotation Error
Outliers: 10 Estimator Avr Max X Y Z Axis About

RAW 410.494 6462.574
LSQ 208.935 713.489 248.853 -323.641 -460.194 56.965 0.160
BLS 207.474 704.142 248.853 -323.641 -460.194 55.037 0.238
WLS 3354.821 5823.751 -794.238 464.793 -5064.401 31.989 -169.974
LMedS 75.463 204.472 -194.590 -67.718 113.134 21.553 0.601

2ndBest >> Tukey 12.569 35.132 -49.394 -29.450 -2.073 7.187 0.029
TWLS 1033.217 1709.669 307.170 1081.765 -1708.412 0.254 0.021

Best >> LP 4.264 14.712 -1.869 -9.889 -6.171 1.996 0.081
LAD 16.914 48.689 -24.899 -66.783 -4.251 10.224 0.263

Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 20 Estimator Avr Max X Y Z Axis About

RAW 534.974 6457.304
LSQ 317.323 900.667 -60.901 15.641 -868.523 6.686 0.140
BLS 311.001 899.635 -60.901 15.641 -868.523 6.717 0.041
WLS 3478.124 5790.135 -191.580 -322.390 -5459.968 34.674 -171.707
LMedS 27.519 83.162 -64.810 107.649 9.294 8.835 -1.079

2ndBest >> Tukey 8.830 28.039 11.958 0.238 -21.447 1.666 0.014
TWLS 1037.784 2158.402 262.833 691.552 -2157.532 0.200 -0.014

Best >> LP 3.745 10.453 -4.840 0.323 -7.248 0.751 -0.015
LAD 24.196 77.657 17.441 -13.986 -59.051 3.699 0.178

Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 30 Estimator Avr Max X Y Z Axis About

RAW 760.803 6462.767
LSQ 524.166 1726.181 -578.041 -433.829 -1216.117 70.138 -3.891
BLS 520.750 1712.118 -578.041 -433.829 -1216.117 68.799 -3.778
WLS 4472.985 8330.073 -1299.379 -1295.965 -8079.397 33.428 -167.652

2ndBest >> LMedS 16.647 59.631 54.875 3.462 -29.917 8.572 0.000
Best >> Tukey 14.425 49.392 -1.603 -65.567 -18.837 8.063 0.376

TWLS 789.280 1256.991 444.825 1256.446 -664.966 0.248 0.007
LP 26.023 92.428 -70.492 -39.799 -44.107 10.513 0.202
LAD 39.923 135.584 -65.520 -31.254 -84.921 11.804 0.179

Table 4. Combined Noise and Outliers resistance test results. See text.
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Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 10 Estimator Avr Max X Y Z Axis About

RAW 540.999 6085.128
LSQ 149.257 494.011 144.449 -122.759 -328.790 36.367 0.671
BLS 149.452 485.989 144.449 -122.759 -328.790 34.432 0.672
WLS 2311.542 6197.539 -1076.314 1203.634 -1669.289 30.416 -160.070
LMedS 136.350 308.560 66.910 -31.657 -280.050 5.013 -0.835
Tukey 43.952 124.268 -58.412 40.524 -78.515 7.686 -0.400
TWLS 1427.543 2133.874 -728.787 2122.566 -1424.366 1.362 0.078

Best >> LP 8.570 23.198 -4.450 4.890 -8.686 2.441 0.118
2ndBest >> LAD 24.561 65.739 -2.359 -3.416 -37.169 4.548 -0.544

Noise: 1 Model Error Translation Error Rotation Error
Outliers: 10 Estimator Avr Max X Y Z Axis About

RAW 1010.969 26429.873
LSQ 554.204 2049.524 812.911 -673.969 -877.471 75.363 -12.393
BLS 548.012 1982.529 812.911 -673.969 -877.471 76.089 -11.444
WLS 2435.348 6633.286 -1186.128 2156.349 -1824.252 29.462 -158.329
LMedS 278.094 863.033 -127.341 -50.840 -665.746 43.113 0.046
Tukey 477.633 1747.181 628.401 -523.574 -808.699 75.444 -8.878
TWLS 1587.257 2959.155 -216.615 2922.414 -1615.280 5.196 0.056

Best >> LP 42.467 125.347 3.214 17.726 -104.093 4.168 -0.278
LAD 149.153 446.592 -13.903 9.976 -329.151 78.027 -2.051

Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 20 Estimator Avr Max X Y Z Axis About

RAW 644.872 7978.731
LSQ 222.049 704.285 38.317 -86.282 -595.499 25.763 0.750
BLS 218.571 688.169 38.317 -86.282 -595.499 22.022 0.708
WLS 3290.707 7875.635 -3935.027 -2673.111 -2663.154 28.169 -168.929
LMedS 187.139 469.149 58.104 24.594 -410.256 12.638 -0.308
Tukey 1295.181 2464.983 949.616 -1625.748 1940.417 45.014 -4.116
TWLS 2602.932 5943.315 958.470 5937.370 -909.445 0.749 0.026

Best >> LP 31.054 111.478 -45.373 27.961 -50.135 12.499 -0.273
2ndBest >> LAD 82.355 243.906 -14.799 21.514 -219.603 6.353 0.147

Noise: 1/2 Model Error Translation Error Rotation Error
Outliers: 30 Estimator Avr Max X Y Z Axis About

RAW 749.124 4368.621
LSQ 311.688 998.178 -350.897 -116.254 -695.196 50.792 -2.239
BLS 310.007 992.931 -350.897 -116.254 -695.196 50.034 -2.296
WLS 2751.972 7107.815 -3003.917 -1.453 -2270.162 35.341 -171.986
LMedS 218.722 778.933 -325.832 440.850 -114.510 60.658 -8.958
Tukey 110.744 342.292 -97.494 138.649 228.195 16.395 -1.663
TWLS 1964.493 4265.691 448.350 4255.876 -1184.232 0.971 0.077

Best >> LP 62.339 216.881 -114.129 26.686 -94.911 25.224 -1.053
2ndBest >> LAD 86.095 280.483 -45.449 8.512 -217.496 13.088 -0.300

Table 5. Wide FOV test test results. See text.
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