
A Real-Time Video Stabilizer Based on Linear-Programming�

Moshe Ben-Ezra Shmuel Peleg Michael Werman
Institute of Computer Science

The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Email: fmoshe, peleg, wermang@cs.huji.ac.il

Abstract

Real-time video stabilization is computed from point-to-
line correspondences using linear-programming. The im-
plementation of the stabilizer requires special techniques
for (i) frame grabbing, (ii) computing point-to-line cor-
respondences, (iii) linear-program solving and (iv) image
warping. Timing and real-time profiling are also addressed.

1 Introduction

Real time video stabilization can be performed robustly
on a regular PC. The stabilization system described here
works on a single CPU PC, at a frame rate of 10-15
320� 240 color frames per second,

The stabilization minimizes anL1 metric (
P
jai � bij)

of point to line distances using linear programming [3]. The
advantages of this approach with respect to accuracy and ro-
bustness are discussed in [2]. In this paper we describe the
real-time implementation issues of this video stabilization.

1.1 Steps in the Stabilization

Image stabilization is performed using motion compu-
tation from point-to-line correspondences. The motion pa-
rameters are recovered from these correspondences by min-
imizing on L1 error measure using linear programming.
The algorithm has the following steps:

Point selection - A set of points from the first image is se-
lected. These points are used for point-to-line corre-
spondences and should have the following properties:
(i) Uniform distribution across the image. (ii) Be on
strong edges with different orientations.

�This research was funded by DARPA through the U.S. Army Research
Labs under grant DAAL01-97-R-9291. It was also supported by Esprit
project 26247 - Vigor

Line correspondence- For each point in the first image
finding one or two possible lines in the second image.

Linear Programming - Solving for the motion parame-
ters by minimizing anL1 error measure is done us-
ing linear-programming. Special considerations are re-
quired for real time performance.

Warping - The stabilized image is computed by warping
the input image according to the recovered motion pa-
rameters. This step involves all the pixels and therefore
it needs to be very efficient.

Two important aspects of any frame rate system include
frame grabbing and real-time profiling, these aspects are
also discussed.

2 Frame Grabbing

At first glance it seems that all frame grabbers do the
same job - they get a frame from the camera and place it
in the computer’s memory for processing. However, several
factors related to the frame grabber have tremendous affect
on the systems performance Among them are:

2.1 Double Buffering

Grabbing a frame takes a long time (1=30� 1=25 sec).
To save this time the grabber should work concurrently with
the computer’s CPU. To do that the grabber should use dou-
ble buffering. The frame grabber continuously grabs frames
into one of two alternating buffers while the computer CPU
is processing the previously grabbed frame. To avoid busy-
waiting the grabber should be able to signal the computer
upon frame grabbing completion. The scheme is given by:

1



1. Get Frame (i=0) into “current buffer”

2. loop:

3. Wait (non-busy) for Get Frame(i) to complete

4. ConcurrentlyGet Frame(i+1) into “other buffer”

5. Process Frame(i)

6. Toggle buffers

7. end loop

2.2 Internal Memory

A frame grabber that works concurrently with the com-
puter must save the video data as it is being digitized. This
will often clash with the CPU memory access. To avoid
this clash the frame grabber should have internal memory
and either a smart DMA controller or an internal bus which
allows the CPU to access one buffer while the grabber is
accessing the other buffer.

2.3 Compression

Some frame grabbers are designed mainly for video edit-
ing. These grabbers usually compress the video input on the
fly. If such grabbers are used for frame rate application, it
is important to verify that the frames are not compressed by
the hardware and then decompressed by the software driver
using most of the CPU time!

2.4 Color Modes

Color frame grabbers are designed to provide one or
more color video formats. It is important to set the grabbing
format to the format that best match the software require-
ment. For example, when an application requires brightness
it is best to set grabber output to YUV, and then directly
use the Y (brightness) channel. The driver is also impor-
tant, for example, if the driver always converts the grab-
ber output into RBG format it causes redundant conversion
Y UV ! RGB ! brighness(Y ).

2.5 Hardware and Software used

The stabilizer was implemented on a300Mh PC
equipped with a Matrox Meteor frame grabbing card. The
frame grabber was controlled using Matrox MIL software
library using asynchronous mode and double buffering. The
operating system used was Windows-Nt4.0

3 Point Selection

Selected points should be distributed uniformly over the
image, they should be on strong edges, and these edges
should include both vertical and horizontal orientations.
The following algorithm is used for point selection. It is
based on a heuristic that vertical edges are easily detected
by horizontal search and vice versa.

1. An initial set ofM � N points is selected on a regu-
lar fixed grid across the image. These points will be
referred to as “black” or “white”, corresponding to a
checkerboard pattern.

2. All “black” points search a narrow horizontal rectangle
for the strongest vertical edge in that rectangle. All
“white” points search a narrow vertical rectangle for
the strongest horizontal edge in that rectangle.

3. A subset of the2K best points (strongest gradients,K
white,K black) are selected from theM�N points us-
ing two adaptive thresholds one for “black” and one for
“white”. Each threshold is increased if more thanK+�
points passed it and decreased if less thanK+� passed
it. Note that a largeM�N

2K
ratio will select only the best

but they may be distributed non-uniformly across the
image.

The test values were:M = N = 9;K = 30; � = 3 which
yields an initial set of81 points. After initialization of sev-
eral frames, the threshold is stabilized and as long as con-
secutive frames are similar (which is an assumption of the
stabilization process) approximately54�66 points are used
for the stabilization. An illustration of the search pattern
and of the detected points is given in Figure 1

4 Point to Line Correspondence

Finding point to line correspondences consists of two
steps (i) computing a similarity surfaces. (ii) Detecting lines
(ridges) within the these surfaces.

4.1 Computing Similarity Matrices

For each selected point(xi; yi) in FrameFq , a similarity
matrixSi, of sizeR�R, betweenFq andFq+1 is computed
using SSD (sum of square difference).:

Si(m;n) =

+vX
k=�v

+vX
l=�v

(Fq(xi + k; yi + l)� Fq+1(xi +m+ k; yi + n+ l))2

2



a)

b)

Figure 1. Search pattern for selected points. a) Horizontal
/ vertical search areas. Strongest horizontal edge is sought
for each vertical rectangle, and strongest vertical edge for
each horizontal rectangle. b) The selected points in a real
image.

The kernel size for the SSD is(2v + 1)� (2v + 1). The
similarity matrixS is the displacement search area - its size
R is the maximum detectable displacement. For numerical
stability S is divided by(2v + 1)2 The test values were:
v = 3 ! kernel size = 7 � 7; R = 21� 21. Note that
the number of pixels that were used is(21 + 3)� (21 + 3)
to get a complete kernel cover at the edges ofS.

4.2 Lines from Similarity Matrices

Two lines are detected for each similarity matrixS, us-
ing the weighted Hough transform [4]. Each lineL in the
Hough transform space is designated by the angle between
L andX � Axis and by the distance ofL from the origin.
Since the size ofS isR�R, the range of possible distances
is [�R=2::R=2] and the angular resolution is180=2R de-
grees. These boundaries allow the setting of a lookup table
for a fast Hough-transform. The weights used for the Hough

transform are the values of similarity matrixS. The first
detected line is the line with the largest bin in the Hough
space which is the strongest ridge in the similarity matrix
S. The search for a second line starts with an angle shift
of 90o from the first line, this ensures perpendicular lines in
the case where the similarity matrix is symmetric. Figure 3
shows a similarity matrix, the detected lines, the approxi-
mated surface and an Hough space example.

5 Motion parameter recovery using Linear-
Programming

Stabilization is done by computing a global 2D motion
model and warping the image backwards according to the
computed model. Common linear models include;

translation - two parameter model: 2D horizontal and ver-
tical motion.

similarity - four parameter model: translation, scale and
rotation (Z-axis)

affine - six parameter model: similarity and shear

homography - eight parameter model, true projective
transformation of a plane.

For simplicity we will demonstrate in this paper motion re-
covery using linear programming from point-to-point corre-
spondences and a similarity model. Point-to-line correspon-
dences which are more robust since they are less sensitive
to aperture effect, point-to-lines correspondences as well as
homography model recovery can be found in [2].

Motion parameters are recovered from point-to-point
correspondence by solving the systemp0 = Mp wherep; p0

are corresponding points (in homogeneous coordinates) and
M is the recovered model. Usually the model is recovered
from an over determined system by minimizing the error in
the least-square sense. This approach is very sensitive to
outliers such as moving objects within the scene. Linear-
programming’s contribution to this scheme include:

Global optimum with no initial guess - Linear program-
ming is guaranteed to find the global optimum and no
initial guess is required.

L1 - minimization - which is more robust to outliers than
the least-square minimization.

additional linear constraints - with linear programming it
is easy to constrain the recovered parameters to prede-
fined limits.

Linear programming is also useful for a special type of cor-
respondence - point-to-polygon correspondence [1]

3



5.1 The Linear Program

A linear program in standard form is given by:

Min : ctx

subject to :

Ax = b

x � 0

Where:x is the variable vector (the unknown),xi � 0.
x are constant weight vector,Ax = b are the constraints.
ctx is called the objective function.

The constraintxi � 0 can be bypassed by substituting
every occurrence ofxi with (x+i � x�i ), x

+

i ; x
�

i � 0
We can always make sure that the constraintAx = b is

met by adding slack variablesz, z+i ; z
�

i � 0 : Ax + (z+ �
z�) = b.

Since all variables including the slack variablesz are
non-negative, and if:

8i; z+i = 0 _ z�i = 0 (1)

then

(z+i + z�i ) = jzj

Enforcing the condition 1 is difficult. However if the
objective function is:min :

P
i(Z

+

i + Z�i ) then for this
objective function the condition is always met (at the opti-
mum). Our new linear programming system becomes:

min :
X
i

(z+i + z�i )

subject to :

Ax + (z+ � z�) = b

x � 0

z+; z� � 0

which is the known solution for solving an over-constraint
systemAx = b using theL1 metric. Note that when the
minimum is found thez variables contain the residual errors
which can be used for segmentation.

5.2 Example

The recovery of similarity model from point-to-point
correspondence is given by:

0
@

x0

y0

1

1
A
2
4

a b e
�b a f
0 0 1

3
5
0
@

x
y
1

1
A (2)

and the linear program is given by:

min :
X
i

(z+i + z
�

i )

subject to :

+(a+ � a
�)x+ (b+ � b

�)y + (e+ � e
�) + (z+ � z

�) = x
0

�(b+ � b
�)x+ (a+ � a

�)y + (f+ � f
�) + (z+ � z

�) = y
0

a
+
; a

�

; b
+
; b

�

; e
+
; e

�

; f
+
; f

�

� 0

z
+
; z

�

� 0

5.3 Implementation issues

Since the constraintsAx + (z+ � z�) = b are easily
met by settingx = 0; z = b, which is also a “basic fea-
sible solution (BFS)” a single phase simplex algorithm can
be used to solve the problem. Since finding the first BFS
(and, in general, determining if the problem is feasible and
bounded) can be as hard as finding a solution, providing a
BFS can reduces time approximately by half.

For a small number of constraints, simplex implementa-
tion which uses a dense matrix (i.o. sparse matrix) is more
efficient. This matrix is allocated once and reused. The
efficiency of the simplex algorithm for dense matrices can
be dramatically increased by using floating point MMX for
pivoting (not yet implemented).

The current implementation of the simplex is a self-
written “by-the-book” primal algorithm with dense matrix.
The only optimization used was loop-unrolling.

6 Warping

Warping is done over the full image. In-order to do this
step efficient MMX is used. To avoid holes in the target im-
age, backward warping is done using bi-linear interpolation.
(bi-quadratic is too time consuming).

7 Stabilization Examples

Constructing a panoramic image from a sequence of im-
ages requires a good stabilization of every frame. Figure 2
shows two panoramas that were created in real-time using
the image stabilizer. Both panoramas were created in a dif-
ficult environment.

8 Profiling

An essential part of the optimization process of a real-
time system is profiling. Optimization should be performed
only when real performance data is obtained, as there are

4



Code Parent Code Description Total Time (sec) Percentage Average time (msec) Number of calls
0 -1 Everything Else 33.86 9.81% 1.36 1
1 0 Next Frame 64.72 18.75% 15.56 4160
2 0 Locate Points 3.12 0.90% 0.75 4156
3 0 Hough Lines 76.52 22.17% 18.41 4156
4 0 Solve LP 73.72 21.36% 17.74 4156
5 0 Warp 78.85 22.85% 18.97 4156
6 0 Display 14.32 4.15% 3.44 4160

Table 1. Profiling results. Elapsed time was: 345.107 sec, 12 Fps.

a)

b) c)

Figure 2. Mosaicing examples. a) A panoramic image that was created in a very close range causing strong distortion of the input
images. b) Point selected for motion computation. Four of the thirty points are located on the moving pendulum. c) Panoramic
image that was created while a pendulum was swinging. The alignment was not affected by the outliers.

always surprises... A real-time system profiler should have
a very low overhead and allow pin-point profiling. Com-
mon profilers are usually too heavy to be used in a real-time
system (probabilistic profilers are more efficient but they re-
quire a long execution time). Table 1 shows the profiling re-
sult of the stabilization program. Appendix A describes the
two pages long profiler code that was used. This profiler is
both very simple and very efficient.

References

[1] M. Ben-Ezra, S. Peleg, and M. Werman. Efficient compu-
tation of the most probable motion from fuzzy correspon-
dences. InIEEE Workshop on Applications of Computer Vi-
sion (WACV98), 1998.

[2] M. Ben-Ezra, S. Peleg, and M. Werman. Real-time motion
analysis with linear programming. InInt. Conf. on Computer
Vision, 1999.

[3] H. Karloff. Linear Programming. Birkhäuser Verlag, Basel,
Switzerland, 1991.

[4] M. D. Levine. Vision in Man and Machine. McGraw-Hill,
NY, USA, 1985.

5



a) b) c)

d) e) f)

g) h) k)

l)

Figure 3. Basic classes of line detection a) Isolated point similarity surface matrix. b) Detected lines for (a). c) Approximated
surface of (a) d) Oval shaped similarity surface matrix. e) Detected lines for (d). f) Approximated surface of (d) g) Line shaped
similarity surface matrix. h) Detected lines for (g). k) Approximated surface of (g) l) Hough space. Red and Green dots are the
detected lines locations. 6



Figure 4. Application layout screen. Top left: direct un-stabilized image, one of the selected points is marked in yellow ring.
Bottom left: stabilized image. Bottom right: Similarity matrix, Hough lines, City-Block distance approximation matrix and Hough
space for the marked point.

7



A A two pages long profiler

The real-time profiler records entry and exit time intervals which are set by the programmer. These intervals can be
nested, in fact all intervals are nested within the first interval which is recorded by the profiler itself. The profiler provides
the following information:

code - the numeric code of the interval.

parent - the numeric code of the parent interval

description - the name/description of the interval

Total Time - Accumulated Time (without sibling intervals time) for the interval.

percentage - percentage of the elapsed time.

average time - average time per call.

calls - total number of entries to the interval (not including return from siblings).

The data is recoded using the STARTPROFILE, ENDPROFILE, ENTER(code), LEAVE(code) macros (windows ver-
sion) and the recorded data is analyzed using a stack. Source listing follows.

A.1 Timing Macros (PC WINDOWS)

The following macros should be added to the program to be profiled. profiling starts at STARTPROFILING and stoppes
a STOPPROFILING. ENTER(code) and LEAVE macros are used to bound sections timing. ENTER and LEAVE can be
nested.

/* ==============================================
* ============= Timing Macros (PC WIN) =========
* ==============================================*/

#ifdef PROFILE

FILE *logfp, *recfp;
static _timeb tbuf;

#define START_PROFILE { \
recfp = fopen("recording.dat","wb");\

assert(recfp != NULL); \
ENTER(0); \

}

#define STOP_PROFILE { \
LEAVE(0); \
fclose(recfp); \

}

#define ENTER(x) { \
_ftime(&tbuf); \
fprintf(recfp,"E %d %d %d\n",(x),tbuf.time, tb uf.millitm); \

}

#define LEAVE(x) { \
_ftime(&tbuf); \
fprintf(recfp,"L %d %d %d\n",(x),tbuf.time, tb uf.millitm); \

}

8



#else

#define START_PROFILE
#define STOP_PROFILE
#define ENTER(x)
#define LEAVE(x)

#endif

A.2 Section codes and names

The following table defines the names of each section for the profiler.

/* ==============================================
* ============= File: names.h ==================
* ==============================================*/

#define CODES 5

char *name[] = {
/* 0 */ "Code 0",
/* 1 */ "Code 1",
/* 2 */ "Code 2",
/* 3 */ "Code 3",
/* 4 */ "Code 4",
/* 5 */ "Code 5",
};

A.3 profiler

The following is the off line profiler report program. It reads the recoding file from the standard input and produces a
small report to the standart output.

/* ==============================================
* =============File: Profiler.c ================
* ==============================================*/

/* Simple Real-Time Profiler
* =========================
* Usage: profile < recording.dat
*
* written by moshe ben ezra - the hebrew university of jerusalem
* www.cs.huji.ac.il/˜moshe
*/

#include <stdio.h>
#include "names.h"

#define STACK_SIZE 100
#define MAX_CODES 50

main()
{

static int stack[STACK_SIZE], sp; /* Nested Calls stack and stack pointer */

double
ts, te, /* Start time, End time */

9



t1, t2, /* Interval time var s */
sum[MAX_CODES], /* sum time intervals */
dt; /* Temporary delta time var */

long
sec,msec, /* Time from input file */
calls[MAX_CODES], /* Call counters */
parent[MAX_CODES]; /* Parent code */

int idx,i; /* Function index, loop i */
char code[2]; /* Enter Exit code */

/*
* Initialization
*/

for(i=0; i<MAX_CODES; i++){
sum[i] = calls[i] = parent[i] = 0;

}

for(i=0; i<STACK_SIZE; i++){
stack[i] = 0;

}

ts = 0;
sp = 1; /* ’Enter’ always leaves the */
parent[0] = -1; /* the previsous level */

/*
* process data file
*/

while(scanf("%s%d%d%d\n",&code,&idx,&sec,&msec) == 4){
t2 = (double) sec + (double) msec / 1000.0; /* current time */
te = t2; /* update end time */
switch (code[0]){

/*==================*
* Enter new section
*==================*/

case ’E’:
if (ts == 0) ts = t1 = t2; /* At init prev interval = 0 */
/*

* leave prev level
*/

dt = t2 - t1; /* Update Previous level interval */
sum[stack[sp-1]] += dt; /* time (but not call counter) */
/*

* enter new level
*/

if (idx != 0)
parent[idx] = stack[sp-1]; /* Save parent code */

stack[sp++] = idx; /* Save section index */
t1 = t2; /* Update start time */
break;

/*======================*
* Leave current section

10



*======================*/
case ’L’:

if (idx != stack[sp-1]){ /* Coherence check */
fprintf(stderr,"Stack Mismatch !\n");
exit(1);

}

dt = t2 - t1; /* Update time and calls counter */
sum[stack[sp-1]] += dt;
calls[stack[sp-1]] ++;

/*
* Return to previous level
*/

sp --;
t1 = t2; /* Start new interval */
break;

default:
fprintf(stderr,"Code Mismatch !\n");
exit(1);

}
}

dt = te - ts; /* Elapsed time */

/*
* Outpout simple report
*/

printf("Duration: %g sec\n",dt);
for(i=0; i<= CODES; i++)

printf("Code: %2d Parent: %2d (%-20s): %5.2f sec. %6.2f%% Avr: %5.2f msec calls: %d\n",
i,parent[i],name[i],sum[i],sum[i]/dt*100.0,sum[i]*1000.0/calls[i],calls[i]);

}

11


