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Abstract

We present an imaging framework to acquire 3D surface

scans at ultra high-resolutions (exceeding 600 samples per

mm2). Our approach couples a standard structured-light

setup and photometric stereo using a large-format ultra-

high-resolution camera. While previous approaches have

employed similar hybrid imaging systems to fuse positional

data with surface normals, what is unique to our approach

is the significant asymmetry in the resolution between the

low-resolution geometry and the ultra-high-resolution sur-

face normals. To deal with these resolution differences, we

propose a multi-resolution surface reconstruction scheme

that propagates the low-resolution geometric constraints

through the different frequency bands while gradually fus-

ing in the high-resolution photometric stereo data. In ad-

dition, to deal with the ultra-high-resolution images, our

surface reconstruction is performed in a patch-wise fash-

ion and additional boundary constraints are used to ensure

patch coherence. Based on this multi-resolution reconstruc-

tion scheme, our imaging framework can produce 3D scans

that show exceptionally detailed 3D surfaces far exceeding

existing technologies.

1. Introduction

High resolution 3D imaging is useful in many applica-

tions, from engineering analysis, to computer graphics, to

the preservation and study of cultural heritage materials.

The goal of this work is to design an ultra-high-resolution

3D imaging framework that targets surface sampling at

more than 600 samples per mm2. To our best knowledge,

this is the highest sampling rate demonstrated to date.

The fundamental problem for 3D imaging at these ultra-

high-resolutions is that while it is possible to obtain very

dense samples of the surface using a high-resolution digi-

tal sensor, it is difficult to perform structured-light at these

resolutions. Virtually all projector lenses are designed to
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Figure 1. Comparison of our results against a state-of-the-art in-

dustrial 3D scanner: (a) our reconstructed surface obtained by

combining (c) and (d); (b) surface reconstructed by a Konica

Minolta Range 7 (168 samples per mm2); (c) our input from

photometric stereo of (over 600 samples per mm2); (d) our

low-resolution geometry (6.25 samples per mm2) obtained via

structured-light.

magnify the projected screen and therefore cannot produce

very dense samples on an object’s surface. While lasers can

be focused on an object at much finer resolution, lasers used

in 3D scanners rarely can produce an illuminated point less

than 10 microns at very close ranges (i.e. a few centimeters

away form the object) to only several hundred microns at

ranges 50− 100cm away. Thus, high-resolution laser scan-

ning at these resolutions is limited to small areas that must

be stitched together.

To appreciate this difference, Figure 1 shows a 3D sur-

face scanned using ultra-resolution imaging and the same
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object scanned by a high-end commercial 3D scanner de-

signed for industrial inspection (Konica Minolta Range

7 [1]). Our 3D surface is scanned at more 3× the reported

surface resolution of the commercial scanner. The com-

mercial scanner also had to acquire multiple scans that are

stitched together (using Konica’s software) because the ob-

ject is bigger than its effective area.

To overcome the limitations of structured-light, hy-

brid imaging approaches that combine positional data from

structured-light together with fine surface normals captured

from photometric stereo have been proposed (e.g. [5, 13,

19]). We adopt this hybrid imaging approach, however

unique to our framework is the significant asymmetry in

the resolutions between the two inputs. Existing work dealt

with sample differences of 4× resolution between the sur-

face normals and low-resolution geometry ([5]), while our

photometric surface detail is scanned at around 100× the

resolution of the low-resolution geometry (see Figure 1(a)

and (b)). This ultra-high-resolution and significant resolu-

tion difference in the hybrid framework creates difficulties

not yet encountered by previous approaches.

To address this significant difference in the resolution be-

tween the surface normals and low-resolution geometry, we

propose a multi-resolution surface reconstruction scheme

that fuses the low-resolution geometric with the photomet-

ric stereo data at increasing levels of details. To deal with

the large data from the ultra-high-resolution input, we adopt

a patch-based scheme that uses additional boundary con-

straints to maintain patch coherence at the boundaries. The

results of our approach are 3D images of surface captured

at an exceptionally high level of detail.

The remainder of this paper is organized as follows: Sec-

tion 2 discusses related works; Section 3 describes our sys-

tem setup to capture ultra high resolution images for nor-

mal estimation, and our structured-light system to capture

surface geometry; Section 4 presents our main algorithm

for surface reconstruction; Section 5 presents our results. A

summary of this work is presented in Section 6.

2. Related Work

There is a vast amount of literature on 3D imaging.

Readers are directed to [17] and [20] for broad overviews;

here only representative examples are mentioned.

3D imaging has been approached using passive trian-

gulation methods such as conventional stereo (e.g. [15]),

passive photometric methods such as shape from shading

(e.g. [10]), active triangulation methods such as structured-

light (e.g. [16]) and active photometric methods such as

photometric stereo (e.g. [21]). Hybrid methods that inte-

grate two of more methods include approaches that combine

shape from motion and photometric stereo (e.g. [9]), posi-

tional (3D points) data and normals (e.g. [18, 3, 7, 12, 11, 5,
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Figure 2. Our 3D imaging setup: (a) Our experimental setup con-

sists of an ultra-high-resolution camera with four lights used pho-

tometric stereo. A low-resolution video camera and digital light

projector form the structured-light system. (b) shows the effective

resolution about one of our objects. Note the scale of the physical

object, versus the pixel resolution. This results in an pixel resolu-

tion of over 600 samples per mm2.

6, 13]), visual hull and normals [8]1, and recently normals

and volume carving [19].

All of the previously mentioned hybrid methods have the

potential to be adapted to handle very high-resolution im-

agery as in our application. We decided on a solution that

is closely related to that presented by Nehab et al. [13]. The

system presented in [13] used two cameras in a structured-

light setup with one of the cameras also used for the pho-

tometric stereo. Positional and surface normals were fused

using a linear formulation that resulted in a sparse-linear

system. In their work, the surface geometry and the pho-

tometric data were of the nearly the same resolution. In

our work, we have 100× more estimated surfaces normals

than we do 3D points. At our resolutions (e.g. 5K×5K sur-

face normals), the sparse matrix proposed [13] would have

approximately 150 million entries. Solving such a large

matrix is not straight forward, even for out-of-core linear

solvers such as [14]. As such, we adopt a patch-wise strat-

egy to the fusion process. In addition, to deal with the sig-

nificant difference in resolutions, we use a multi-resolution

pyramid approach to adaptively incorporate the geometric

constraint from the low-resolution geometry during the sur-

face integration.

3. System setup

Our hybrid system uses an ultra-high-resolution camera

together with four controllable lights. This is combined

with a separate structured-light rig composed of a low-res

camera and projector. Figure 2(a) shows our setup. The

four light sources are calibrated using a mirrored sphere.

We placed polarized filters in front of the lights, together

with a polarized filter on the ultra-high-resolution camera

to reduce light scattering. The two cameras and projectors

are calibrated by a physical calibration pattern.

1Also see http://carlos-hernandez.org/gallery/.



The following gives more details to the two main com-

ponents.

Ultra-high-resolution photometric stereo

High-density photometric stereo images can be captured

using a consumer level 35 mm SLR camera equipped with

a macro lens. Due to the zoom factor of the lens, this ap-

proach will only be able to scan very small surface patches.

While it is possible to integrate several surface patches to-

gether, we have opted to use a large-format camera. Com-

mercial large-format digital cameras up to 340Megapixel

exist on the market [2], however, in this work we use

a custom-built 1.6gigapixel camera that uses a translation

scanning back with an effective format of 450 × 300 mm.

The details to this camera are outside the scope of this paper

and readers are referred to [4] for more information.

To estimate normals, we use the ultra-high-resolution

camera to capture four images of the surface with varying

illumination from the four light sources. The photometric

stereo technique in [21] is used to obtain the surface nor-

mals. Figure 2(b) shows the scanning setup for the dragon

plate used as a running example in this paper. The plate

has a diameter of 20cm. These images of the object are at a

resolution of 5K×5K pixels.

Structured-Light geometry Our structured-light system

consists of a Benq MP624 projector and a 1024×768 video

camera. Standard binary gray-code patterns [16] is used to

estimate the low-resolution geometry. In our setup (see Fig-

ure 2(b)), we get approximately 6 samples per mm2 from

the structured light scanner, this resolution varies based on

the projectors distance to the object but is representative

of a typical structured-light system. Figure 1(d) shows a

small example of the 3D surface geometry estimated us-

ing our method. There are slight pixelization-like arti-

facts due to inaccuracies in estimating the projected pat-

terns’ boundaries, however, since the low-resolution geom-

etry serves only as a soft constraint in the surface recon-

struction process our approach is insensitive to these errors.

Because our ultra-high-resolution scanning back camera re-

quires roughly a minute to capture an image, we opted to

use an auxiliary video camera to perform the structured-

light procedure instead of the large-format camera itself.

4. Surface Reconstruction Algorithm

This section describes the surface reconstruction algo-

rithm. The basic algorithm to reconstruct a surface from

normals is described first. This is followed by a description

on how to include the low-resolution geometry constraint

and boundary connectivity constraint into the algorithm. Fi-

nally, the steps of the multi-resolution strategy is detailed.

ni nj

hij

nj

ni

Osculating arc

(a) (b)

Figure 3. The osculating arc constraint [22] for surface reconstruc-

tion. Given the normal configuration {ni, nj} between neighbor-

hood pixel i and j in (a), we can uniquely defined the relative

height hij in (b) by using an osculating arc to connect ni and nj

with minimum curvature.

4.1. Surface from normals

Given a dense set of normals the goal is to reconstruct

a surface that satisfies the normals’ orientation constraints.

We use the recent approach presented by Wu et al. [22] for

obtaining a surface from normals that constrains the esti-

mated surface using an osculating arc between neighboring

normals (see Figure 3). This problem can be cast as a least-

square problem that minimizes the following energy func-

tion:

E(S|−→n ) =

N
∑

i

∑

j∈N (i)

((Si − Sj) − hij)
2 (1)

where S is the surface we want to reconstruct, (Si − Sj)
is the first derivative of S in discrete form, hij is the rela-

tive height defined by the osculating arc constraint between

neighborhood pixels, N (i) is the first order neighborhood

of a pixel, and N is number of pixels. A qualitative com-

parison of the osculating arc constraint with other surface

from normals algorithms can be found in [22].

Equation (1) can be solved using Gauss-Seidel iteration.

At each iteration, the surface height is updated according to

the following equations:

St+1
i = St

i + λ1ξ1,

ξ1 =
1

|N (i)|

∑

j∈N (i)

(hij − (St
i − St

j)) (2)

where |N (i)| is the number of neighborhood pixels, λ1 =
0.9 is the step size and t is iteration index. Note that hij is

the same for all iterations and can be pre-computed.

4.2. Lowresolution geometry constraint

Because photometric stereo inherently captures only lo-

cal reflection information rather than global structure, many

surface from normal reconstruction approaches do not ac-

curately reflect the real surface geometry. As discussed in

section 2, one strategy to overcome this is to incorporate

positional information in the reconstruction process.
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Figure 4. Example of surface reconstruction without including

the geometric constraints: (a) reconstructed surface from normals

only; (b) a side view of (a); (c) reconstructed surface with low-

resolution geometry constraints; (d) a side view of (c).

Our low-resolution geometry constraint is modeled using

the following equation:

E(S|L) =
M
∑

i

(|d(h(Si)) − Li| − ∆)2 (3)

where L is the low-resolution geometry captured by the

structured-light setup, M is the number of pixels in low-

resolution geometry proxy, h(·) is a Gaussian convolution

process with radius equal to two times the downsample rate,

d(·) is a downsample operation to match the high-resolution

normals to the low-resolution geometry, and | · | is the L1

norm (absolute value) of the errors. The term ∆ is a param-

eter controlling the amount of depth tolerance for surface

details to be reconstructed and refined by the normals.

With the additional low-resolution geometry constraint,

the iterative update equation in Equation (2) can be updated

as follow:

St+1
i =St

i + λ1ξ1 + λ2ξ2,

ξ2=

{

h(u(Li − d(h(Si)))), if |d(h(Si)) − Li| > ∆
0, otherwise

(4)

where u(·) is an upsample operator. The effect of our low-

resolution geometry constraint is shown in Figure 4. The

value of ∆ can be estimated according to the variance of

surface details reconstructed from normals and can be spa-

tially varying.

4.3. Boundary connectivity constraint

As discussed in Section 2, the ultra-high-resolution of

the photometric stereo component, makes it challenging to

perform integration on the entire surface in one pass. To

(a) (b)

Figure 5. Effect of the boundary connectivity constraints: (a) with-

out the boundary constraint, and (b) with boundary connectivity

constraint.

overcome this the surface can be subdivided into more man-

ageable sized patches and each patch reconstructed individ-

ually. This leads to a problem that the boundaries of adja-

cent patches may not be properly aligned after reconstruc-

tion. To overcome this, we add a boundary connectivity

constraint described by the following equation:

E(S|B) =
∑

i∈Ω

(Si − Bi)
2 (5)

where Ω is the overlapping area of neighborhood surface

patch, B is a surface computed by blending the intermediate

reconstructed surface in Ω between neighborhood patches

using linear feathering. Adding the boundary constraint into

Equation (2), we get:

St+1
i = St

i + λ1ξ1 + λ2ξ2 + λ3ξ3,

ξ3 =

{

Bi − Si, if i ∈ Ω
0, otherwise

(6)

For this boundary connectivity constraint, the weight of

λ3 during the update iterations needs to be adjusted as the

system is iterated. In the initial estimation, λ3 is equal to

zero, and its weight is gradually increased as the number

of iterations increases. This allows the surface patch to be

reconstructed freely at initial iterations and later refined to

meet the boundary of neighborhood patches. In our imple-

mentation, λ3 and B are updated at every 100 iterations.

With this boundary connectivity constraint, surface recon-

structed can be done in parallel and the problem of reso-

lution is no longer an issue. The effect of this boundary

constraint is shown in Figure 5. For the results in this paper,

surface patches are taken to be of size 1024 × 1024 with

overlaps of 100 pixel boundary overlap (i.e. 10%).

4.4. Multiresolution pyramid approach

Due to the very large differences in resolutions between

the surface normals and the low-resolution geometry, di-

rectly adding the surface normals to the low-resolution ge-

ometry will result in noisy reconstruction as shown in Fig-

ure 7. To avoid this, our surface reconstruction is done in

a multi-resolution pyramid fashion. The main purpose of

using the pyramid approach is to correct the low-resolution

geometry using normals at the equivalent before we use it as

soft constraint at a higher resolution. The multi-resolution
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Figure 6. Evolution of our 3D surface up the multi-resolution pyramid: (a) low-resolution geometry; (b) intermediate result at the lowest

level of the pyramid; (c) the third level; (d) the last level and final 3D reconstruction.

(a) (b)

Figure 7. Example of the benefits of the multi-resolution scheme:

(a) our surface reconstruction directly using the low-resolution

geometry; (b) reconstructed surface using the multi-resolution

scheme. The 3D surface in (a) shows noticeable quantization er-

rors due to the low-resolution geometry.

pyramid approach also allows us to resolve small mis-

alignments between the high-resolution normals and low-

resolution geometry due to device calibration errors.

We divide the pyramid uniformly into 5 different levels

starting at the resolution used to capture the low-resolution

geometry (i.e. 1024×768). For each level, instead of down-

sampling the estimated high-resolution normals, we down-

sampled the ultra-high-resolution input images and estimate

the normals from the dowsampled images. This down-

sampling helps to reduce some of the camera’s sensor noise

when estimating the normals. We run our surface recon-

struction algorithm described in Equation (6) with the re-

sults from previous level as the low resolution constraint.

For the lowest resolution, the low-resolution geometry esti-

mated by structured-light is used. Figure 6 shows our inter-

mediate surface reconstruction results (i.e. the evolution) at

different levels in the pyramid.

5. Results

This section shows several results captured by our sys-

tem. Each surface was generated using 800 iterations (per

patch) of our surface reconstruction algorithm with the

boundary constraint applied once after every 100 steps. Be-

cause we are working with resolutions beyond the capabili-

ties of existing devices, providing quantitative comparisons

proved very challenging. As a result, we can only show vi-

sual results for some of our results. For the dragon plate we

took the object to an industrial scanning facility using used

a Konica Minolta Range 7. This serves as our baseline com-

surface normals 3D result

close up 1 close up 2

Figure 8. 3D reconstruction of the elephant figurine. The zooms

show exceptional detail on the surface of the object.

parison against a state-of-the-art industrial laser scanner.

Figure 8 shows an 3D reconstruction of an elephant fig-

urine which is approximately 15cm wide. Figure 9 shows

example of an man figurine of a man roughly 12cm high.

The objects required 9 patches and resulted in about 6.5

million reconstruct 3D points, while the man required 12

patches and resulted in about 4.5 million reconstructed 3D

points. Both of these results show exceptional surface de-

tail. The man figurine is further zoomed to reveal detail that

would require a magnifying glass to be seen (properly) with

the unaided eye.

Finally, we compare our result a scanned dragon plate

with that obtained from an industrial standard high end laser

scanner (Konica Minolta Range 7) in Figure 10. The finest

scanning resolution that can be obtained by the laser scan-

ner is 168 samples per mm2, while our sampling rate is 600
samples per mm2. The plate required 25 patches and re-

sulted in about 21.5 million reconstructed 3D points. The

state-of-the-art scanner reports to have a scanning accuracy

of 40 microns. We can see that on the double-zoom of these

two surfaces, we reveal detail while the result from the laser

scanner is almost completely flat. Note that in order to cap-

ture the whole plate by the laser scanner, several scans were

performed and stitched together. Our approach, on the other
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zoom 1 zoom 2 zoom 3
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Figure 9. 3D reconstruction of the man figurine. Due to the ultra-resolution of the 3D scan, we can show a zoom and “double zoom” of the

3D surface. This double zoom reveals detail that would require a magnifying glass to see properly.

hand, was able to image the entire 3D object in one pass.

In addition, even though we use a patch-wise approach in

surface integration, our surface does not contain any block-

ing or pixelation artifacts. This helps to demonstrate the

effectiveness of our boundary connectivity constraint and

multi-resolution pyramid approach. Comparing the surface

depth, our estimated surface depths are consistent with sur-

face depths captured by laser scanner.



6. Conclusion

This paper presented a framework to capture ultra-high

resolution surfaces using a hybrid system that consists of

an ultra-high-resolution photometric stereo system and a

structured-light system. Currently, this strategy appears

to be one of the only ways to surpass the resolution of

structured-light systems. While this imaging framework

can be construed as a feat of engineering, there are real con-

cerns that had to be addressed when dealing with such mas-

sive amounts of data and with significant resolution asym-

metry in the respective subcomponents. To address these

issues, a multi-resolution pyramid approach was introduced

to reconstruct the high resolution surface progressively and

adaptively. We have also discussed how to reconstruct sur-

face in a patchwise fashion and seamlessly stitched the re-

constructed surface patches together.

We do can envision that other strategies could be used

to produce a similar 3D imaging system. Moreover, as this

work is not focused on improving photometric stereo, we

inherit all the issues known to affect normal estimations (e.g

Lambertian surface assumption, albedo estimation, use of

light sources and their calibration, etc). In addition, while

combining positional information with estimated normals is

a common approach to reduce errors in the surface recon-

struction, it may be possible to devise algorithms that can

perform surface reconstruction directly from the normals

without proxy geometry. To help others address these is-

sues, the dataset used in this paper (input images, estimated

normals, and low-res geometry) are publicly available for

download and experimentation.
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