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Figure 1. Synthesized color images from computed multi-spectral data. Still-life scene with synthesized white illumination (left),
tungsten illumination (middle) and theater blueish illumination (right)(roscolux# 72 filter).

Abstract
We present a novel active imaging approach that uses op-
timized wide band filtered illumination to obtain multi-
spectral reflectance information. Our optimization algo-
rithm utilizes light source and camera spectral information
in order to maximize the signal strength and the robustness
to noise. Through the use of active wide band illumination,
our system can obtain material reflectance information in
the presence of moderate (indoor) unknown ambient illu-
mination. Our method is very simple and does not require
special equipment. It can be used by professional and am-
ateur photographers alike to obtain material properties and
to synthesize captured scenes under arbitrary illumination.

1 Problem, Contribution and Limitations
We seek a very simple approach to multi-spectral imaging to
be used by amateur and professional photographers in every-
day environments without special equipment. Multi-spectral
reflectance data allows better color constant rendering and
spectral re-lighting under arbitrary illumination, which is
important for applications such as recording and archiving
for cultural e-Heritage and digital museums[15].

We address the following problems: (i) Filter Selection -
Optimal filter selection for digital photography is a difficult
problem, even for trichromatic imaging [9]. In this paper, we
selected 16 of 208 possible filters. (ii) Ambient Illumination
- analyzing the spectral properties of the radiance emitting
from an object using a passive multi-spectral camera with

∗This work was done while Cui Chi was a visiting student at Microsoft
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wide field of view [17, 18] does not usually reveal the ac-
tual reflectance properties of the material as the irradiance
at each object point is generally unknown1. Moving the ob-
ject to a dark room or scanning it using a spectrometer that
measures a single point (while shielding it from stray light)
is time consuming and may not always be practical.

In this paper we approach these problems by probing the
scene using active illumination. The main contributions of
this paper are: (i) we provide a truly simple and affordable2

approach to multi-spectral imaging using only a camera, a
light source (slide projector or a flash) and a set of theatrical
color filters. (ii) we propose an algorithm for selecting an
optimized set of filters from a large set of wide band filters.
(iii) we show that by modulating the illumination we can
greatly reduce the effect of ambient light, including spatially
varying ambient illumination.

The main limitation of our active method, is that it cannot
be used to photograph distant objects, such as landscape,
and cannot be used in direct sunlight. However, our filter
selection method is still applicable to these circumstances.

Related work
Multi-spectral imaging is an extremely wide field of re-
search ranging from material classification [3] and color
measurement [20] to terrestrial imaging [22, 21] and as-
tronomical imaging [6]. In this paper we only focus on
aspects of multi-spectral imaging that are related to com-
puter vision and image based rendering. In particular, we

1This would require complete knowledge about the light sources, geom-
etry of the scene and BRDF of the object.

2The entire set of filters used in this paper costs less than USD$1.



are interested in modeling, filter selection, robustness to
noise, color constancy[4] and spectral re-lighting. Abrardo
et al. [1] showed that color constancy can be obtained from
multi-spectral images using only seven spectral channels
and finite-dimensional linear models. Maloney et al. [13]
further enhanced model based spectral analysis. Jaaske-
lainen et al. [11] have used principal component analysis
(PCA) on two data sets (Munsell colors and naturally oc-
curring spectral reflectances) to construct a vector-subspace
model that can be used to model both data sets.

More recently, Connah et al. [2] compared the performance
of several linear methods for reflectance estimation using
digital cameras. They concluded that smoothness maximiza-
tion provides the best performance. Imai et al. [10] com-
pared narrow band and wide band filtering for multi-spectral
imaging and showed that although the narrow band is theo-
retically more robust, good and sometime superior results
were obtained using a wide band filter set. This result sup-
ports our selection of wide band filter set, though our pri-
mary reason is energy related [19]. Imai et al. [9] also ad-
dressed the problem of selecting 5 filters out of 33 for a 5-
channel multi-spectral camera. To solve the combinatorial
selection problem in reasonable time they used a heuristic
based on previous results.

A closely related work is the use and optimization of tunable
filters for multi-spectral imaging [5]. In contrast to these
methods that use special devices for constructing the opti-
mized filters, we select an optimized subset of filters from a
larger set.

2 Method
2.1 Model and Analysis
We model the radiometric response of pixel (x, y) as:

ρxy
k = t

∫
Rk(λ)Sxy(λ)Exy(λ)d(λ) + N(αt, αt), (1)

where Exy(λ) is the spectral distribution of the incident
flux (irradiance) at the world point P corresponding to pixel
(x, y), Sxy(λ) is the reflectance spectral distribution at P ,
Rk(λ) is the camera response function at channel k, and t
is the integration time. N(αt, αt) is additive Gaussian noise
with mean and variance proportional to the integration time.
This approximates the sensor’s Poisson distributed additive3

noise (mostly dark current).

We now add a light source with known spectral distribution
L(λ) and a filter with known spectral transmittance distri-
bution Φi(λ) to the model. However, instead of putting the
filter in front of the lens, as is usually done for multi-spectral
imaging, we put the filter in front of the new light source. As-
suming that no shadows are casted by the new light source4,
the irradiance at the P is now composed of two components:
ambient illumination Axy(λ), and the additive light L(λ)

3This simple model does not include multiplicative noise.
4Flat world model, or coaxial illumination.

(a) (b)
Figure 2. (a) Conventional multi-spectral methods use a set of
filters that are placed (either temporally by switching filters,
or spatially as in Bayer pattern) in front of the sensor. With
multiple light sources, and inter reflections it is very difficult to
obtain the reflectance information of the material (decoupled
from illumination variations). (b) In contrast, Spectral Probing
places the filters in front of an additional light source, thus sig-
nificantly improving the ability to recover material reflectance
information.

modulated by the filter Φi(λ). The added component is as-
sumed to be unaffected by location of P 5:

ρxy
k,i = ti

∫
Rk(λ)Sxy(λ) [Axy(λ) + Φi(λ)L(λ)] d(λ)

+ N(αt, αt), (2)

where ti is the integration time used with filter Φi.

We now subtract two measurements taken with two different
filters i, j and normalized by the (possibly different) integra-
tion times ti, tj :

tjρ
xy
k,i − tiρ

xy
k,j ≈ tjti

∫
Rk(λ)Sxy(λ)Φi(λ)L(λ)d(λ)

− titj

∫
Rk(λ)Sxy(λ)Φj(λ)L(λ)d(λ)

+ N(0, 2αtitj). (3)

This eliminates any (linear) effect caused by the ambient
light component, which can be quite complex, and reduces
the mean of the additive noise. The cancelation of the (lin-
ear) ambient light component would not be possible had the
filter been placed in front of the lens, as the unknown am-
bient illumination component would be affected by the filter
as well. Inter-reflections (and translucency) of the new light
source do exist and affect the accuracy of the measurement.
This limitation can be relaxed if the light source is a pro-
jector by separating the direct and indirect components as
shown by Nayar et al. [14].

Placing the filter in front of the light has an undesirable con-
sequence. The filter Φi(λ) attenuates the intensity of the
light source L(λ), but does not affect the intensity of the
ambient light. This rules out the use of narrow band filters
(10µm . . . 20µm), due to their low intensity relative to the
ambient light.

5Far light source, and flat world assumption or coaxial illumination.



Finding a sufficient number of significantly different wide
band filters is not an easy task. Luckily, since the filters are
placed in front of the light source, they need not have optical
quality surfaces. We choose Roscolux theatrical filters[16].
These filters are designed for lighting applications in the-
aters and are available with over over 230 different (known)
spectral transmission distribution. We now face the prob-
lem how to characterize a good selection and how to select
a small subset (8-16) from a huge space of

(
230+
8...16

)
possible

selections.

2.2 Filter Selection and Optimization
Trichromatic filter selection optimization is mainly con-
cerned with maximizing light transmittance efficiency and
matching the human eyes response. For our purpose, we
are mainly concerned with the numerical stability of the
complete system, including the light source, filter set and
camera response. We seek to minimize the condition num-
ber of M in the resulting discrete version S = MX ,
where S is the recovered reflectance, M = Mn×n =[
Rλ

(
Φi

λ − Φj
λ

)
Lλ

]−1

, 1 ≤ i ≤ n, j = i + 1 is the

transformation matrix6 and X is the measurement vector
ρxy

i − ρxy
j , of equation 3 (scale omitted for clarity).

We seek to minimize:

k(M) + wT̄−1, (4)

where k(M) is its condition number of M , T̄ is the average
transmittance of the selected filter set used to favor better
transmittance, and w is a small weighting factor.

Clearly the number of combinations
(
230+
16

)
is too large to

be directly evaluated using an exhaustive search. Even after
discarding filters with very low average transmittance we are
left with

(
228
16

)
possible combinations. This is a difficult non-

linear optimization problem.

Because a selection can be represented as a string of zeros
and ones, or in a more compact way, as a string of indices,
selection problems lend themselves naturally to optimiza-
tion using genetic algorithms. The DNA represents a specific
selection of filters, a crossover is a switching of filter subsets
between two selections, and a mutation is the substitution of
a single filter with another. We followed the genetic algo-
rithm framework presented in [12]. We used a very simple
genetic algorithm summarized by ’Algorithm-1’ below. We
ran the algorithm for a relatively long time (a few days) to
obtain the filters used in this paper.

Algorithm 1
Input:

• L - illumination source spectral distribution
• Φ - a set of filter spectral transmission
• R - camera spectral response
• N - maximum number of iterations
6In practice we use M−1 to avoid matrix inversion.

Setup Condition No.
Min Random Selection 2063
Filter Only 1119
Tungsten Illumination Result 348
Tungsten+Correction 208

Table 1. The performance of our filter selection algorithm. Ran-
dom Selection: minimum condition number of a large set of
random selections of filters. Filter Only: optimization without
considering the specific light and camera response. Tungsten
Illumination Result: optimization result for tungsten illumina-
tion. Tungsten+Correction: optimization result with illumina-
tion corrective filter. The overall condition number improved
significantly.

• S - population size

• K - reproduction (keep) rate

• C - crossover rate

• M - mutation rate

Output:

• Selected filter set.

Processing:

1. Select at random population of size S from Φ.

2. Sort results in descending order using Equation 4.

3. Copy the best K% of S to the next generation.

4. Crossover C% random pairs based on fitness and insert
them into the next generation.

5. Mutate M% random selected filters based on fitness
and insert them into the next generation.

6. Repeat from step 2 until maximal number of iteration
is reached.

Finally, for tungsten illumination case, we added a balanc-
ing blue filter to boost its color temperature. We manually
selected one filter from a set of five filters. This filter was
used in conjunction with each of the other filters. Table 1
shows the result of our optimization process. We can see that
our optimization algorithm considerably reduces the condi-
tion number of the system, we can also see that better results
were obtained when using a corrective illumination filter.

3 Testing
We tested our method using simulations, a tungsten (slide
projector) light source, and a xenon (flash) light source. The
tests were conducted indoors with ambient illumination con-
ditions varying from controlled illumination inside a dark-
room to uncontrolled illumination of an open-space cubical.



Noise Simulation Test Results
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Figure 3. Noise simulation result: Ground truth and recovered reflectance curves of various samples (from the Macbeth color
checker) under different noise conditions. Corresponding patch colors are shown at the top left corner.

3.1 Simulation Tests
We simulated the imaging process using the known spec-
tral distribution of tungsten illumination, the Macbeth color
checker reflectance and the response of a Sony ICX424AL
monochromatic sensor. We approximated Poisson noise
with Gaussian noise having the same mean and variance.
We tested our system using zero noise and noise level of
1%, 5% and 10% of the signal level. We simulated a set of
16 filters that were selected by our algorithm and used trun-
cated SVD[8] to solve for reflectance. Simulation results are
shown in Figure 3. Our method recovers the reflectance of
the Macbeth color checker with average RMS error ranging
between 1.8% for 1% noise level to 3.3% at 10% noise level,
respectively.

3.2 Real Image Tests - Macbeth Color checker
In this test we used a conventional 35mm slide projector as
our light source. We used a monochromatic camera, and a
set of 16 filters plus a correction filter for the tungsten illu-
mination (as described earlier). We placed the filter set in
the projector cartridge and the correction filter in front of
the projector lens and took a sequence of images, each with
different added illumination. Throughout the experiment we
left the room fluorescent light on to add relatively strong
and unknown ambient illumination. We then computed the
reflectance using truncated SVD (with dimension 12). The
results are shown in Figures 4,5 and 6.

Figure 4 shows the best and the worst results of the test (only

one grey scale patch is shown as all were good). We can
see that while there is a problem at the far red part of the
spectrum in some of the patches, the curve generally fits and
the overall average RMS error was 7%. Figure 5 is given
as a reference and shows the resulting curves without ap-
plying differences shown in Equation 3. The ambient light
drastically reduces the quality of the results. Finally, we re-
light the Macbeth color checker using our measurements and
compared the results to the ground truth rendering. The re-
sults are shown in Figure 6. The computed results, though
not identical, are very close to the ground truth rendering.

3.3 Real Image Tests - Natural Objects
In this test we captured a multi-spectral image of an assort-
ment of fruits in a similar way to the previous test. We com-
pared real images captured by a Nikon D70 camera with im-
ages computed from multi-spectral data. We computed im-
ages for tungsten illumination and flat spectra and applied
the non-linear gamma function of the Nikon-D70[7] to the
result. Figure 7 shows the comparison result. The computed
pictures, though not identical to the real Nikon images that
were more greenish/yellowish, look similar and quite natu-
ral. We also show the reflectance curve of part for the scene
in Figure 8.

3.4 Real Image Testing - Xenon Illumination
For our next test we used a Xenon light source (Nikon cam-
era flash) and an RBG camera (Nikon D70). We used our
algorithm to select a new set of filters using the camera’s



Ambient Illumination Test With Differences - Best Results
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Ambient Illumination Test With Differences - Worst Results
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Figure 4. Best and Worst results of real Macbeth color checker test with unknown ambient illumination. Inaccuracies occur mostly
at the far red range.

Papaya Skin Plum Skin Banana Skin Coconut Shell

Figure 8. The recovered reflectance distribution of some parts of the fruits. Both spectral distribution and relative albedo are
recovered.

trichromatic response, and we selected only three filters (the
minimum number if we wish to use differences and obtain
multi-spectral information).

Figure 10 shows images captured using three different filters
(used in conjunction with the camera’s RBG filters), a cap-
tured white-balanced image and a synthesized flat illumina-
tion image. As seen in the figure, the computed image looks
almost identical to the white-balanced captured image. The
advantages of our approach over traditional camera pre-set
white balance are (i) neither calibration nor mode selection
by the photographer is needed, and (ii) our methods works
on a pixel to pixel basis. It is therefore applicable to uneven
complex illumination (for example a scene is lit through a
window and by a table lamp). Spatially varying white bal-
ancing is not possible using traditional camera white balanc-
ing, which is a global operator.

Two filters are enough to obtain a white balanced image un-
der unknown ambient illumination as only RGB channel in-

formation needs to be recovered. The third filter allows us to
do spectral-relighting using multi-spectral information. Fig-
ure 2 shows some synthesized colors images using the cap-
tured multi-spectral data.

4 Applications
As only few simple and very affordable filters are needed,
our method can be used in professional studio photography,
as well as amateur photography. Professional studios al-
ready have multiple light sources (strobe and continuous),
and some even have computerized illumination systems. It
is therefore very simple to add a few filters and obtain much
richer post-processing capabilities.

Amateur photographers can use a multi-flash system as the
hypothetical flash shown in Figure 9 (or be embedded in the
camera itself). This hypothetical flash is set to work with the
camera continuous shooting mode. A burst of three images
can be captured in less than a second. The images can be
processed either by the camera or by an external computer.



Ambient Illumination Test Without Differences
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Figure 5. Macbeth color checker test results with unknown am-
bient illumination without using differences. The unaccounted-
for ambient light drastically degraded the accuracy of the re-
sult.

A typical application will need to align the images (if not
captured using a tripod) and then allow the user to select
different illuminations and camera (or film) response func-
tion [7] from a predefined set (or create new ones). Fig-
ure 12 shows a very simple Matlab prototype that allows the
user to select and manipulate light spectra and camera (or
film, as some photographers may cherish a certain film with
traditional look and feel) responses and create new spectral
relit images. Although very simple, these effects cannot be
reproduced as easily and reliably by much more complex
software systems such as Photoshop.

A more sophisticated program may be able to use multi-
ple light sources with different spectral distributions and 3D
scene information to create true relighting of a scene in a
“virtual light studio”.

5 Conclusion
We present a very simple, affordable and yet effective
method for multi-spectral imaging using active illumination.
Our method requires simple theatrical filters that are selected
by a genetic algorithm from a very large space of possible
combinations to match the added illumination and the cam-
era spectral characteristics.

We show that by modulating the illumination with color fil-
ters in front of the illumination source we can significantly
reduce the effect of the ambient illumination. These filters
can work in conjunction with the camera’s RGB filter set to
provide better spectral resolution (or reduce the number of
illumination modulating filters).

Ground Truth Computed

Flat Illumination

Tungsten Illumination

Roscolux#72 Filtered Illumination

Roscolux#2003 Filtered Illumination
Figure 6. Rendering of the Macbeth color checker under vari-
ous illimunations for ground truth data (left) and our captured
multi-spectral data (right). The result, though not completely
identical, is very close.

We showed that our optimization algorithm significantly re-
duces the condition number of the resulting equation set. We
presented simulated and real tests showing the effectiveness
of our approach.

Finally, we presented a possible application in which a
multi-flash system can be used to capture multi-spectral
information that can be used for color balancing and for
color relighting with the help of a simple “virtual light
studio” prototype. This enables the photographer to mimic
the look and feel of different light sources and different
cameras or films using digitally captured images.
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Figure 12. Our interactive user interface prototype. The user can select predefined light spectra, and camera profiles, and can
also manually edit the light spectrum and create arbitrary illumination effects. A more sophisticated program may be able to use
multiple light sources with different spectral distributions and 3D scene information to truly relight a scene in a virtual light studio.

Captured Computed

Flat Illumination

Tungsten Illumination

Figure 7. Real images taken by Nikon D70 under flat and tung-
sten illumination (left) and computed images using our cap-
tured data and estimated camera spectral response. The im-
ages are similar, though the real D70 images are more greenish.
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